
1

A Journey to Git for
Windows on AArch64
GNU Toolchain
MinGW, Cygwin and MSYS2
GitHub CI
Community Contributions

Engineering group

 Radek Barton Evgeny Karpov
 GitHub @Blackhex @eukarpov

The Classic Way to Port
an Application to Another
Platform or Architecture

External components or libraries that a software
application needs to function properly.

Architecture-specific code, that is written for a
specific hardware architecture and may not run
correctly on others.

Utilities that assist in the creation, debugging,
maintenance.

A Simple Way to Port a
GNU App to Windows
(MinGW) if Possible

MinGW (Minimalist GNU for Windows) – tools to
create Windows application.

Code Adaptation, modifying an application's
source code so it can run in a different
environment.

Handling dependencies, porting the external
libraries or components.

Cross-compilation, compiling code on one
platform (the host) to run on a different platform
(the target).

Cross-compilation on Linux for
Windows

Compilation on Windows

POSIX Support: Cygwin,
MSYS2 Packages (bash)

POSIX (Portable Operating System Interface)

Large collection of GNU tools on Windows.

Unix-like environment.

Easier to port applications that rely on POSIX APIs.

POSIX Experience

Git for Windows
Dependencies

MSYS2, Cygwin, and MinGW are not present on
Windows Arm64.

The tools do not provide utilities for building the
AArch64 MinGW target.

GCC requires a new target to be implemented in
order to build all packages for the new
architecture.

Adding a New aarch64-
w64-mingw32 Target to
the GNU Toolchain

aarch64-w64-mingw32 Target

aarch64 - ARMv8 architecture
w64 - Windows 64-bit
mingw32 – MinGW, which originally has been developed for
32-bit and later extended for 64-bit.

binutils
Introduce new aarch64-w64-mingw32 target.

Binutils - A collection of binary tools, the GNU
linker and assembler, for creating executable
programs.

GCC - The GNU Compiler Collection that supports
various programming languages, including C, C++.

Binutils

Relocations for AArch64.

Reverse Engineering of the COFF Format.

Resolving linking issues.

Community Support.

The First Contribution to the GNU Toolchain.

GCC Prototyping, Proof of
Concept for C and C++.

DLL import/export support.

SEH – Structure Exception Handling
implementation in binutils and GCC.

OpenBLAS, OpenSSL, FFmpeg and libjpeg-turbo
4 packages are supported and fully tested.

Time to start contributing upstream.

Reducing the Scope of the First Series to the C
Language.

GitHub Actions as an
Effective Way to Build
Powerful CI

CI has proved very useful for the porting.

Working mostly on default GitHub runners.

Self-hosted Runners in Azure to Validate Arm64
Tests.

Building 6 targets.

Testing 4 packages and executing internal test.

Daily rebasing.

Validate Patch Series.

Collaboration with Linaro
and Review of Patch
Series.

Linaro extensive knowledge and experience in
contributing for GNU Toolchain, 10+ years. Strong
credibility in GNU Toolchain community.

Helpful recommendation for organizing patch
series and valuable reviews.

Assisting with patch series testing.

3 internal patch series reviews.

6 patch series reviews with Linaro. One review
takes usually 1w.

12 reviews in total before the patch series has
been approved for merging.

The new target will be
supported, tested, added to CI, and maintained by
Linaro.

Timeline Estimates for the
Contribution Upstream

May 2024: Introduce new aarch64-w64-mingw32
target. Build a hello-world application.

May 2024: Add DLL import/export support. Build
for OpenSSL, OpenBLAS, FFmpeg and libjpeg-turbo.
Fully tested.

June 2024: Enabling debugging information, call
stack support in debugger and optimization fixes in
GCC.

Sep – Dec 2024: Resolving issues with unit testing
for the new architecture.

2024: C++ support without SEH.

Potential contribution
2024: SEH implementation for C++.

Why is Port of Cygwin
Needed?

Git for Windows is a MSYS2 distribution with more
than 230 packages.

MSYS2 contains both MinGW and Cygwin
packages.

MSYS2 runtime (msys-2.0.dll) is friendly fork of
Cygwin (cygwin1.dll).

MinGW packages are already ported using LLVM
(CLANGARM64 environment).

Enabled MSYS2 Packages

AArch64 Cygwin/MSYS2
Port

Yet another targets need to be added to
GCC and binutils:
- aarch64-pc-cygwin
- aarch64-pc-msys

Challenges with porting certain features properly:
- Fork vs. Windows memory model.
- Deprecated APIs not supported on Windows

Arm64.
- POSIX threads, signals and traps, and stack

manipulation.
- cygwin1.dll is a hybrid DLL, functions

autoloading.

How to Try Our MinGW Toolchain in
MSYS2?

• Add to /etc/pacman.conf:
[woarm64]

Server = https://windows-on-arm-
experiments.github.io/msys2-woarm64-
build/$arch

SigLevel = Optional

• Then update the database and install the
toolchain:

pacman -Sy

pacman -S mingw-w64-cross-gcc

• Enjoy and report issues
to https://github.com/Windows-on-ARM-
Experiments/msys2-woarm64-build/issues

https://github.com/Windows-on-ARM-Experiments/msys2-woarm64-build/issues
https://github.com/Windows-on-ARM-Experiments/msys2-woarm64-build/issues

Q & A

An active experimental repo with
C++ support for AArch64 on
Windows.

https://github.com/Windows-on-
ARM-Experiments/mingw-woarm64-
build

https://github.com/Windows-on-
ARM-Experiments/msys2-woarm64-
build

Please report issues on that repo if
you found something.

https://github.com/Windows-on-ARM-Experiments/mingw-woarm64-build
https://github.com/Windows-on-ARM-Experiments/mingw-woarm64-build
https://github.com/Windows-on-ARM-Experiments/mingw-woarm64-build
https://github.com/Windows-on-ARM-Experiments/msys2-woarm64-build
https://github.com/Windows-on-ARM-Experiments/msys2-woarm64-build
https://github.com/Windows-on-ARM-Experiments/msys2-woarm64-build

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

