
LLVM glibc project
The road to build glibc with clang/llvm
Adhemerval Zanella
Carlos Seo

Madrid 2024

Project Goals

● Allow glibc to be built with a different compiler than gcc
○ Initially only aarch64 and x86_64

● Improve glibc code coverage by using a different set of compiler warnings

● Improve clang support with features that are tied to compiler support
○ i.e. fortify headers

● Check possible performance differences
○ i.e. generic math code

Madrid 2024

Challenges

● Glibc uses a GNU C standard, so it relies a lot on gcc extensions to the language

● Similar for assembler and static linker, where it assumes binutils

● Some GNU extensions were already discussed and LLVM community would not
implement it
○ i.e. nested functions

● Others are not fully compatible between compilers
○ i.e _Float128 support on some ABIs

Madrid 2024

Initial Work

● Remove the usage of GNU extension that LLVM will not implement and that do not
affect code ABI or code generation
○ Nested functions
○ ASM label after first use
○ Instructions not supported by LLVM’s integrated assembler

● Adapt glibc to use a different static linker than binutils
○ Remove the use of the linker script — not fully supported by all lld versions
○ Do not assume all binutils optimizations

■ i.e. GOT avoid relocation on x86
○ Assume disjointed .rela.dyn and .rela.plt for loader
○ Missing ABI support

■ i.e. ARM TLS descriptors for some old lld versions

Madrid 2024

Initial Work

● Refactor code to avoid binutils and/or gcc-specific extensions
○ Use of gcc -fno-toplevel-reorder on errlist-compat.c
○ Remove the usage of a linker script to generate the required RELRO

■ Old lld versions did not support all the required directives
○ Fixes some assembly usages that are not fully compatible with clang integrated assembler

■ i.e. binutils .tfloat directive

● Improve generic clang support
○ Reorganize headers to avoid function redefinition after initial usage
○ Improve fortify support

Madrid 2024

Current status

● Most of the work in out-of-branch (azanella/clang on sourceware.org), which is
based on current master branch
○ ⅓ patches to build all glibc modules for aarch64 and x86_64
○ ⅔ patches to build all required testcases

● All new configure options supported
○ --enable-stack-protector , --enable-fortify-source , --enable-cet ,

--enable-memory-tagging

● Targeting a minimal of clang/llvm version 16

Madrid 2024

Current status

● It uses the gcc runtime as default (libgcc.a and libgcc_s.so)
○ Using the llvm provided is possible, but requires more work

● clang/llvm version 18 and using gcc 11 runtime, along with llvm tools (lld, llvm-ar,
etc)
○ 5 regressions on both x86_64 and aarch64
○ It uses the gcc runtime
○ Most failures are math corner cases

● The bootstrap is still not as easy as gcc

Madrid 2024

Limitations

● Some iFUNC corner cases do not work correctly when built with clang and linked
with binutils (GNU-1045)
○ iFUNC is not widespread, and using clang with lld does not trigger the regressions

● gmon on aarch64 have a different ABI for gcc and clang (GNU-1049)
○ Not sure how often it is used now with more complete profiling solutions like Linux perf

and binutils gprofng

https://linaro.atlassian.net/browse/GNU-1045
https://linaro.atlassian.net/browse/GNU-1049

Madrid 2024

Limitations

● Some math tests show some wrong code generation (GNU-1052)
○ Although limited to long double / _Float128

● To use the llvm provided runtime would require more work (GNU-1126).
○ The llvm-libgcc runtime helps, but it also shows a lot of regressions

https://linaro.atlassian.net/browse/GNU-1052
https://linaro.atlassian.net/browse/GNU-1126

Madrid 2024

Add support to use compiler-rt/libunwind

● Glibc requires libgcc for floating point operations for long double / _Float128,
and unwind, backtrace, and pthread cancellation
○ glibc also expects libgcc.so to provide __gcc_personality_v0 , which is used by the

GNU cleanup handler extensions (used on pthread cancellation)
○ llvm libunwind does not provide the __gcc_personality_v0 symbol

Madrid 2024

Add support to use compiler-rt/libunwind

● LLVM provides a specific runtime that mimic the gcc one: llvm-libgcc
○ Enabling it is exclusive with compiler-rt and libunwind
○ It does not provide __sfp_handle_exceptions on x86_64 (which raises floating point

exceptions)
○ It does not support floating point rounding mode different than default (FE_TONEAREST),

nor floating point exceptions for some modes
○ All symbols are public (different than hidden with libgcc), which generates PLT calls for

soft-fp calls

● Issue GNU-1126 shows the current status with llvm-libgcc
○ 96 regressions for x86_64
○ 355 for aarch64

https://linaro.atlassian.net/browse/GNU-1126

Madrid 2024

Future work

● Upstream the first part to enable llvm build aarch64 and x86_64
○ It should also enable the build for 32 bit arm (not thumb) and i686

● Upstream the remaining patches to fix the testcases

● Work to fix the regressions with llvm-libgcc
○ Assuming this would be desirable way to bootstrap a clang toolchain, as ChromeOS is

aiming

● Add Continuous Integration to build / testing to avoid regressions on both clang and
glibc changes

Thank you

