
Advanced features of
Linaro Toolchain CI
Christophe Lyon
Thiago Bauermann
Laurent Alfonsi

Madrid 2024

Agenda
● Flaky tests support

● Multiple components

● Interesting cases

● Pre-commit CI

● Some statistics

Madrid 2024

Flaky tests

Madrid 2024

Flaky tests
● Some testsuites have ‘flaky’ tests: results are slightly different every time

● They cause various problems
○ Waste of time investigating on the CI maintainer side
○ Waste of time on the developers side
○ Lack of confidence in the automatic notifications

■ Developers tend to ignore them when there are too many false alarms
■ If the community loses trust in the CI, it’s very difficult to rebuild

Madrid 2024

Flaky tests support
● Sources of flaky tests

○ Timing assumptions / race conditions
○ Testing harness problems
○ DejaGnu problems
○ Sometimes only on a subset of architectures / environments

■ e.g., stable on hardware, flaky with QEMU

● Possible approaches to flaky tests
○ Reduce parallelism
○ Create and maintain lists of flaky tests
○ Remove or XFAIL flaky tests

● Our (automated) approach to flaky tests
○ Detect flaky tests
○ Add flaky test to the list of flaky tests
○ Ignore flaky tests for a few weeks
○ Re-detect flaky tests

Madrid 2024

Flaky tests detection
● Run testsuite

● Check failures against the list of expected FAILs and flaky tests (baseline results)

● If we have new [unexpected] FAILs, re-run testsuite
○ Only the offending subset

● If new FAILs are still FAILing – they are FAILs (i.e., regressions)

● If new FAILs are now PASSing – they are flaky tests

● Keep re-running progressively smaller subsets of the testsuite until there are no
more unexpected FAILs.

Madrid 2024

Using flaky fails file …/flaky.xfail
Using expected fails file …/baseline.xfail
Starting testsuite run #0.
FAIL: xxx1
FAIL: xxx2
 ⋮
Starting testsuite run #1.
PASS: xxx1
FAIL: xxx2
 ⋮
Starting testsuite run #2.
FAIL: xxx3
 ⋮
Starting testsuite run #3.
 ⋮

Detected new FAIL → PASS flaky test:
flaky,expire=20240807 | FAIL: xxx1

New flaky tests were found: do another run.

flaky,expire=20240807 | FAIL: xxx3

Madrid 2024

LNT Dashboard – GDB on aarch64-linux

Madrid 2024

Multiple components

Madrid 2024

Classic GNU toolchain single component CI
● <component> is one of Binutils, GCC, GDB, Glibc, QEMU

● Build <component>
○ git clone
○ make all

● Run testsuite
○ make check

● Compare results
○ Fetch baseline results
○ Compare new result summaries vs baseline result summaries

Madrid 2024

Full GNU toolchain CI: multiple components
● Take tip-of-trunk of Binutils, GCC, Glibc, and GDB

○ and tip-of-trunk Linux (for kernel headers)
○ and tip-of-trunk QEMU (for testing)

● Build tip-of-trunk toolchain

● Run testsuites

● Bisect any failures down to a single commit, in any of the components

Madrid 2024

https://ci.linaro.org/view/tcwg_gnu/job/tcwg_gnu_cross_check_gcc--master-aarch64-build/lastStableBuild/artifact/artifacts/

Madrid 2024

Build → Reduce → Bisect → Report → Reset
● Build #(N-1): Pre-existing baseline results from previous good build

● Build #(N): Build new branches of all components
○ Build new Binutils,GDB,Glibc,Linux,QEMU and new GCC – FAIL
○ Trigger 2 builds to reduce failure to a single component

● Build #(N+1): Build new branch of Binutils,GDB,Glibc,Linux,QEMU
○ Build new Binutils,GDB,Glibc,Linux,QEMU and baseline GCC – PASS
○ Successful build updates baseline results

● Build #(N+2): Build new branch of GCC
○ Build baseline Binutils,GDB,Glibc,Linux,QEMU and new GCC – FAIL
○ Trigger bisect build to bisect commit range of GCC

Madrid 2024

Interesting cases

Madrid 2024

A few interesting cases
GNU-1188
● binutils patch causes a regression in Glibc tests

○ elf: Add _bfd_elf_link_m[un]map_section_contents
○ FAIL: wcsmbs/tst-wcstod-round

● Fixed in binutils

GNU-1136
● gdb patch causes a regression in GCC tests

○ Gdb: Only search types in cp_lookup_rtti_type
○ FAIL: libstdc++-prettyprinters/cxx11.cc print ecmiaow
○ FAIL: libstdc++-prettyprinters/cxx11.cc print emiaow

● Longstanding GDB issue, workaround applied to the testcase

https://linaro.atlassian.net/browse/GNU-1188
https://linaro.atlassian.net/browse/GNU-1136

Madrid 2024

https://inbox.sourceware.org/gdb-testers/578038658.1014.1706641415312@jenkins.jenkins/

Madrid 2024

https://inbox.sourceware.org/gdb-testers/CACb0b4=DNpT0r2GYPozJ1fomuybxukAm5SpFFakoefBoDVQ70A@mail.gmail.com/

Madrid 2024

Pre-commit CI

Madrid 2024

Pre-commit CI
● Instead of catching regressions (post-commit), why not test patches before

they are merged?
○ Also gives useful information to reviewers/maintainers

● Interacts with patchwork
○ Fetch patches from patchwork
○ Apply patches on top of baseline revision
○ Run the same build/test recipe as post-commit CI
○ Update “check” status in patchwork
○ Notify author/submitter in case of regression

https://patchwork.sourceware.org/

Madrid 2024

https://patchwork.sourceware.org/project/gcc/list/

Madrid 2024

Madrid 2024

Pre-commit CI challenges
● Patches do not apply or are incomplete

○ Patches are extracted from mailing lists
○ Patches have implicit dependencies

● Patches cannot be trusted
○ Testing environment needs to be containerized
○ … but we need to extract diagnostics for email reports

● Testing bandwidth
○ Post-commit build can test hundreds of revisions at a time
○ Pre-commit build tests one patch at a time

Madrid 2024

Upstream feedback

Madrid 2024

Upstream feedback
● Initial feedback was positive but…

○ A few people complained about the notifications
○ We worked on improving the messages, and access to useful information

● Very positive feedback from GNU Cauldron presentations

● We then got more positive feedback
● We explicitly encourage developers to contact us

● Several messages explicitly saying Linaro Toolchain CI is a great improvement

● “Linaro CI” often mentioned by developers when discussing their patches

● Requests for new features / improvements
○ Verify ChangeLog, coding rules, etc…

Madrid 2024

Pre-commit CI and upstream
● Pre-commit CI not always taken into account by patch authors

● Possible improvements:
○ Reply to thread on the list to increase visibility
○ Policy change asking for revert?

● Pre-commit CI and auto-regenerated files
○ GCC patches submission did not contain auto-regenerated files

(autoconf/automake, but not only)
○ CI applies “incomplete” patches, leading to failures….
○ …. And to complaints
○ Worked to improve automation, but too complex to fully automate
○ Gathered arguments and community agreed to a Policy change

■ Patches should now be submitted with all auto-generated parts
■ Enables more pre-commit CI
■ Also gives reviewers more confidence

Madrid 2024

Statistics

Madrid 2024

Post-commit CI stats between 2023-08-01 and 2024-03-30 (8 months)

Madrid 2024

Post-commit CI stats between 2023-08-01 and 2024-03-30 (8 months)

Madrid 2024

Pre-commit notifications

Madrid 2024

That time we accidentally broke the pre-commit CI

Madrid 2024

Some quotes from the community
● Finally, [Patchwork] has been integrated with

our CI systems (thanks Linaro!), so it can
automatically pull reviews and run validations
on them, then report the results back; often
before I've even had time to look at the patch.
— Richard Earnshaw – 23 Apr 2024

● For anyone reviewing this, I'm aware of the
arm regressions (thanks again, linaro CI). I'm
looking into them, but other reviews are still
welcome!
— Guinevere Larsen – 9 Apr 2024

● Bootstrapped and tested on
x86_64-unknown-linux-gnu, will push if the
linaro CI is happy.
— Richard Biener – 16 Jan 2024

● Very many thanks (and a Happy New Year) to
the pre-commit patch testing folks at
linaro.org. Their testing has revealed that
although my patch is clean on x86_64, it
triggers some problems on aarch64 and arm.
The issue (with the previous version of my
patch) is that these platforms require a
paradoxical subreg to be generated by the
middle-end, where we were previously
checking for truly_noop_truncation.
— Roger Sayle – 31 Dec 2023

Thank you

