
Cuttlefish and
Kernels
Linaro Connect, May 2024
Ram Muthiah <rammuthiah@google.com>

Madrid 2024

What is Cuttlefish?
● Android Virtual Device used by kernel, systems, and BSP devs across the Android

Ecosystem to help develop pre-silicon hardware, kernel software, or test various
different android configurations

Madrid 2024

Why should you use it?
● Virtio compliant

○ GPU, SND, Input, Net, Wifi, Block, pmem
○ QEMU, CrosVM, Gem5, QNX, OpenSynergy

● ADB, WebRTC, serial
● Used to test upstream Linux

○ Android Common Kernel’s CI/CD pipeline
● AArch64, x86_64, riscv64

○ GCE, AWS, w/ or w/o GPU, Ampere Boxes, Rockpi, Emulation
● Bootloader support (U-Boot)

○ UEFI compatibility
○ Bootconfig + AVB support

● Fastboot
● Developed upstream (AOSP)

Madrid 2024

Getting Started

Madrid 2024

Install our host packages
● cuttlefish-base and cuttlefish-user - https://github.com/google/android-cuttlefish

Android Build
$ mkdir android && cd android
$ repo init -u https://android.googlesource.com/platform/manifest -b main
$ repo sync -j
$ source build/envsetup.sh
$ lunch aosp_cf_x86_64_phone-trunk_staging-userdebug
$ m -j

Kernel + Module Builds
$ mkdir kernel && cd kernel
$ repo init -u https://android.googlesource.com/kernel/manifest -b \
 common-android-mainline # or common-android14-6.1
$ repo sync -j
$ tools/bazel run //common:kernel_x86_64_dist \
$ tools/bazel run //common-modules/virtual-device:virtual_device_x86_64_dist

https://github.com/google/android-cuttlefish
https://android.googlesource.com/platform/manifest
https://android.googlesource.com/kernel/manifest

Madrid 2024

Launch/Interact w/ the device
$ cvd start -kernel_path /path/to/bzImage \
 -initramfs_path /path/to/kernel/module/ramdisk
$ adb shell
$ tail -f ~/cuttlefish_runtime/kernel.log // dmesg
> Go to https://127.0.0.1:8443/

https://127.0.0.1:8443/

Madrid 2024

Future
● EFI Boot - next presentation :)
● Automotive Virtio SCMI
● Virtio RPMB
● Virtio GPIO
● Media Acceleration (Video Encode/Decode, Camera)

Madrid 2024

References
cloud-android-ext@google.com - Feature requests are welcome!
https://source.android.com/docs/setup/create/cuttlefish - for more information

mailto:cloud-android-ext@google.com
https://source.android.com/docs/setup/create/cuttlefish

Generic (Android)
Bootloaders
Linaro Connect, May 2024
Ram Muthiah <rammuthiah@google.com>

Madrid 2024

What is a typical Android Bootloader?
● A vendor written piece of software that is a part of the final stage in the boot chain

and does

● Some things common
○ Fastboot
○ libavb
○ Assembly of the kernel commandline,

bootconfig, dt
○ Load into memory of the kernel, ramdisks,

bootconfigs, DTBs
○ Device Lock State Assessment
○ Kernel Jump

● Some things not
○ Boot Splash Screens
○ Measured Boot Reporting to TZ
○ RNG
○ Boot Slot Selection
○ Hypervisor Init
○ … the boot firmware

Madrid 2024

A few problems jump out
Every vendor is reimplementing common logic in their boot firmware
● With some vendor specific differences (TZ interactions, Splash Screens, the

device firmware underpinning the
loader, etc.)

Every release - Android loading requirements can change.
● Init_boot, bootconfig, vendor_boot, etc.
● When they do - firmware developers across the ecosystem update their

bootloaders to accommodate.
● But these changes don’t get backported - leaving older SOCs and Devices

behind
A lack of updatability
● Anytime a vulnerability is caught in the common load logic, the change has to be

backported to 10s-100s of device firmwares

Madrid 2024

Past Solutions
● Upstream UBoot
● Android Things
● EFIDroid

Madrid 2024

What to do?
If Google could provide a Generic Android Loader that got updates every release,
how might a vendor go about integrating it?

And extending it?

A spec conveniently exists for such an interface - UEFI
● The interface is stable and doesn’t change frequently (>10 years and counting for

2.10)
● Many bootloaders support it
● It supports discoverable calls

Madrid 2024

A proposal - Generic Bootloader (GBL)
Google provides a Generic Android Bootloader EFI Application every release which
● Accommodates new boot requirements
● Gets regular patches for security updates
● Is backwards compatible

The requirement of the vendor to use this - implement a UEFI loader in their final
stage which supports the absolute min
● RNG
● Block read/write
● Slot Discovery
● AVB Key Validation
● [link here to source]
● [Your requirements here]

Madrid 2024

Getting Started
Code + Readme are here:

https://android.googlesource.com/platform/bootable/libbootloader/+/refs/heads/main/
gbl/

Artifacts are here:
https://ci.android.com/builds/branches/aosp_uefi-gbl-mainline/grid

https://android.googlesource.com/platform/bootable/libbootloader/+/refs/heads/main/gbl/
https://android.googlesource.com/platform/bootable/libbootloader/+/refs/heads/main/gbl/
https://ci.android.com/builds/branches/aosp_uefi-gbl-mainline/grid

Madrid 2024

What’s next
● Getting your feedback and incorporating it
● Looking into LittleKernel UEFI Support
● With that in mind - comments and suggestions are welcome!

rammuthiah@google.com

Thank you
Questions?

