
Enabling mobile trust
thanks to DICE/DPE in
Android

Madrid 2024

What is DICE and DPE?
● DICE and DICE Layering are concepts that help create attestation schemes and other system features:

○ Defined by Trusted Computing Group (TCG): Device Identifier Composition Engine

○ The device is provisioned with a Unique Device Secret (UDS).

○ At boot time all loaded components are measured and measurements recorded.

○ The combination of UDS and the first measurement derives a Compound Device Identifier (CDI) value.

○ Later with the combination of CDI and measurements further CDIs are derived.

○ SW components can be grouped. A group of components are contributing to single CDI value.

○ From the CDI further keys (sym. and asym.) can be derived. These can be used for attestation and sealing.

○ A group is represented by a certificate. It is signed by a key derived from its CDI.

● What is DPE:

○ Another TCG spec (driven by Google) : DICE Protection Environment

○ DPE is a specification for an isolated enclave used to store and manage DICE secrets, perform DICE derivations and sign attestation certificates.

○ It defines the HW and the SW requirements to make DICE computation in a secure, isolated environment.

○ Server-client architecture, where all bootloader components are a client of the entity that executes the DPE service.

https://trustedcomputinggroup.org/wp-content/uploads/TCG-DICE-Protection-Environment-Version-1.0-Revision-13_21March24.pdf

Madrid 2024

Why DICE and DPE are important?
● Google is interested in a DICE based attestation scheme in Android:

○ The sequence of certificate creates the DICE Certificate Chain . It could represent all the SW
components of a system from immutable bootloader up to user space.

○ Data can be bound to a given version of a SW component with seal and unseal operations. Same
or greater version of the SW component can unseal (decrypt) the previously sealed (encrypted)
data.

● A SW only implementation already exists:

○ Generic and Android specific DICE library: Open-dice repo

○ The chain is starting (ideally) from the immutable bootloader.

○ All bootloader stages do DICE computation and create a certificate. DICE data is handed off to
the next stage which will extend the data coming from the previous stage and so on.

○ Available on Pixel 6 and presumably onwards.

○ No end-to-end open-source reference (BL1 - pVM user space) implementation is available.

● The goal is to extend the Android DICE certificate chain to pVMs for new attestation use

cases, e.g.: provisioning secrets to a pVM.

● DPE provides extra security guarantees compared to the SW only DICE implementation.

https://cs.android.com/android/platform/superproject/+/master:external/open-dice/?q=open-dice&ss=android%2Fplatform%2Fsuperproject

Madrid 2024

Where to run the DPE service?

● The DPE spec does not have hard requirements on the exact implementation

details of the enclave or secure environment that comprises a DPE.

● The Runtime Security Engine (RSE) is an isolated execution environment which

can provide security guarantees for DICE secrets.

● RSE capabilities:

○ On-chip secure enclave

○ Act as the Root of Trust: Secure boot, loading components

○ Provide runtime services

○ M-class based

○ MHU interface towards the rest of the system

○ Crypto acceleration;

○ Side channel and fault injection protection

○ Exclusive SRAM; OTP; ROM code

○ Access all system memory

Madrid 2024

DPE support in RSE

● The DPE implementation is based on the combination of DPE spec (revision 0.9) and Open

DICE profile.

● Open DICE is followed (like a DPE profile) where the DPE spec leaves details unspecified.

● The DPE service is kept simple:

○ Reduced command support: DeriveContex(), GetCertificateChain(), CertifyKey(), DestroyContext()

○ No dynamic memory allocation

○ A single, plain session is supported.

● DPE commands are CBOR encoded.

● SW components can be grouped to layers with a custom argument (cert-id) of DeriveContext.

● A certificate chain, rooted in the ROM code of RSE, is produced which represents all the

components recorded by DeriveContext command.

● Focused so far on attestation use case, sealing is planned.

● Developed and tested on the TC2 platform, which includes RSE (part of TF-M project).

● DPE implementation is available here.

https://cs.android.com/android/platform/superproject/+/master:external/open-dice/docs/specification.md
https://cs.android.com/android/platform/superproject/+/master:external/open-dice/docs/specification.md
https://totalcompute.docs.arm.com/
https://git.trustedfirmware.org/TF-M/trusted-firmware-m/+/refs/heads/main/platform/ext/target/arm/rse/tc/
https://git.trustedfirmware.org/TF-M/tf-m-extras/+/refs/heads/main/partitions/dice_protection_environment/

Madrid 2024

DPE integration with boot time components
● RSE executes the runtime DPE service.

● Early bootloader measurements of RSE are kept in

SRAM and processed later by DPE at service init.

● All bootloader stages (up to NS BL) have their own

DPE client library and MHU driver. They send CBOR

encoded commands.

● All SW components (config data could be as well:

dtb) are measured and recorded to RSE.

● RSE does the DICE computation and certificate

creation.

● Context handles are handed off through shared

memory between boot stages.

● The boot flow is single threaded with blocking calls.

● Plan to showcase this in the TC23 release in July.

● Integration with TF-A available here.

https://review.trustedfirmware.org/c/TF-A/trusted-firmware-a/+/26405/17

Madrid 2024

Hybrid solution
● A full solution (DPE integration up to pVM’s user space) is a lot of work. Responsibility of affected components is spread

among many project. A massive collaboration is required in the ecosystem to pull it off.

● The hybrid solution is meant to mixes the HW-backed and the SW-only solution to produce a single DICE certificate chain.

● RSE FW, TF-A and NS bootloader rely on DPE service in RSE (HW backed part).

● NS bootloader queries the certificate chain and the last CDI values.

● NS bootloader creates an Android DICE handover blob and adds it to the pvmfw’s configuration data.

● This enables the Android SW stack, which will rely on SW-only crypto as of today, to extend the exported certificate chain to

produce a single certificate chain. It covers the TCB from the immutable bootloader up to the user space.

● Benefits:

○ UDS is provisioned to an OTP memory accessible only by RSE. AP has no access to the root secret.

○ Avoids the implementation complexity and risks around Linux/pKVM/pvmfw/user space integration.

○ Extends the Android DICE certificate chain to the entire SW stack.

○ The SW-only solution can be gradually upgraded to rely on the DPE service in RSE instead.

● Drawbacks:

○ Not an ideal solution from a security point of view.

● The goal is to showcase DPE and enable partners to build upon it.

● However, Linaro is working on adding DICE support to TF-A on platforms without a DPE-capable execution environment.

Madrid 2024

Hybrid solution

Madrid 2024

DICE Certificate Chain on TC platform

Thank you

	Slide 1: Enabling mobile trust thanks to DICE/DPE in Android
	Slide 2: What is DICE and DPE?
	Slide 3: Why DICE and DPE are important?
	Slide 4: Where to run the DPE service?
	Slide 5: DPE support in RSE
	Slide 6: DPE integration with boot time components
	Slide 7: Hybrid solution
	Slide 8: Hybrid solution
	Slide 9: DICE Certificate Chain on TC platform
	Slide 10

