

Developing and Deploying Software for Hybrid Systems

Chris Adeniyi-Jones, Principal Software Architect Arm Ltd

Agenda

- What and why are hybrid systems?
- Investigation
- Options and Challenges
- End Game
- Questions

A Hybrid System

Evolving Edge

Evolving Edge

Investigation

NXP iMX8M-MINI-EVK

NXP iMX8M-MINI-EVK

Quad Cortex-A53

Cortex-M4

1 Gigabit ethernet

UARTs (Console output)

2GB DRAM

System software

Cortex-A53

- Yocto built Linux
 - remoteproc
 - rpmsg
 - Sleep and resume functionality

• k3s

- Lightweight Kubernetes distribution
- Can be configured to be more edge-centric SMARTER

Cortex-M4

- FreeRTOS
- NXP MCUXpresso SDK
- GNU Arm Embedded Toolchain
- rpmsg_lite

Yocto

- The Yocto Project helps developers build custom embedded Linux distributions, it contains the following key elements:
 - Tools for Linux development
 - Poky, a reference embedded distribution
 - OpenEmbedded build system
- Yocto is widely adopted, supported on many architectures
- Many ODMs, OSVs and chip vendors provide SDKs, BSPs for use with Yocto Project

remoteproc and rpmsg

- The remoteproc framework allows different platforms/architectures to control (power on, load firmware, power off) the remote processors.
- virtio: VirtIO framework that supports virtualization. It provides an efficient transport layer based on a shared ring buffer (vring).
- rpmsg: A virtio-based messaging bus that allows kernel drivers to communicate with remote processors available on the system.
- DTB file configuration required for Cortex-M4, shared memory

remoteproc and rpmsg

MCUXpresso-SDK

- FreeRTOS
- Peripheral drivers
- Board-support
 - o i.MX8M-MINI-EVK
 - Configuration via various files
 - Memory map (TCM, DDR)
 - Peripheral access
 - Supports power-management
 - Sleep/Deep Sleep (which sub-systems remain awake)
 - Wake
 - Support for IPC
 - Read Power state
 - Wake other processors
 - NXP rpmsg_lite implmentation

Our Demo Application

Demo FreeRTOS Application

- Writes a regular timestamp to a console log via UART
- Periodically checks to see if the Cortex-A53 processors are in sleep mode
 - If so, then the application wakes them up
- Very simple proxy.
 - More realistically the application would perform some processing to decide whether to trigger a wake up event. e.g hearing a wake word.

Required patches: Arm Trusted Firmware and Linux kernel Cortex-M4 would also sleep when Cortex-A53s suspended! Cortex-M4 could not wake the Cortex-A53s

k3s

- k3s is a lightweight Kubernetes distribution
- Open-source
- Automating deployment, scaling, and management of containerized applications
- Compatible with k8s => access to ecosystem of tools
- Can be configured to be more edge-centric SMARTER
- Applications deployed as Pods
 - Each pod consists of 1 or more containers that execute on the same node

Madrid 2024

https://getsmarter.io

Hybrid Container runtime

- k3s configured with custom RuntimeClass
- Runtime class attribute added to pod description
- containerd configured to use the container runtime specified by kubelet
- Container specification annotated with Board and MCU type
- Runtime can determine if Cortex-M4 is already executing firmware

Gaps

- Partitioning is split between Linux DTS, FreeRTOS/SDK configuration files
- Configuration is static (boot or compile-time)
- Names in Linux device-trees and device-drivers are not standardized
- General lack of discoverability

Options and Challenges

OpenAMP Project

OpenAMP (Open Asymmetric Multi-Processing) seeks to standardize the interactions between operating environments in a heterogeneous embedded system through open-source solutions for Asymmetric MultiProcessing (AMP).

Runtime coexistence and collaboration Runtime hardware resource assignment Resource sharing and IPC between runtimes Control mechanisms to start and stop runtimes

A Linaro Community Project: https://www.openampproject.org

System Device Tree

- Extends the Devicetree Specification to handle heterogeneous SoCs with multiple CPUs, possibly of different architectures, as well as the execution domains running on the CPUs.
- Additional bindings for describing multiple distinct CPU clusters in a single heterogeneous SoC, as well as the memories and devices connected to them.
- Additional nodes which define the execution domains running on the SoC and assign hardware resources to them. This is done through a new node, /domains, and additional bindings related to it.
- New tools to convert SDT into DTS (for Linux) or vendor-specific configuration files

A description of the whole system and the desired partitioning

Part of the OpenAMP Project.

Challenges

- OpenAMP Reference Platforms and examples
- RTOS Support
- System Device Tree WIP
- Device Tree transformation paradigm

End Game

Now

Questions?

Thank you