
Many ways to learn
Rust
Daniel Thompson
Linaro

Madrid 2024

Biography: Daniel Thompson
I’m do many things for Linaro and one them is that I get to wear the training
manager’s hat. I learned Rust whilst wearing that hat. That means I’m carrying a lot
of baggage. However it also means I have spent a lot of time thinking about how to
teach Rust and thinking about how we can learn it.

I’m not going to make any attempt to teach Rust today. Instead this talk contains my
reflections on learning Rust.

Basic --|
 Pascal ------|
 “Unix” (sh/awk/…) ------------------------------ glue --------------
 C --| |---
 Java --| |-|
 Prolog --|
 C++ ----------| | C++11 --| |--|
 Python ---------- glue --------------
 Rust --

Madrid 2024

What you might already know about Rust

In decreasing order of the probability that you do, in fact, already know it:

Rust is…
… memory-safe

… performant
… hard to learn

… productive

Madrid 2024

What you might already know about Rust

In decreasing order of probability (that you, in fact, do already know it):

Rust is…
… memory-safe

… performant
… hard to learn?

… productive

Dogmatic compiler

People told you scary things about the
borrow checker

Rust is commonly introduced to solve
hard problems

It’s different (a.k.a. C made you think type
annotations come first and that integer
promotion is a good thing)

Traits and generics are intertwined

Madrid 2024

Rust is different
Being different is not the same as being
hard to learn… but if you have spend the
last [five|ten|twenty|forty] years using only
languages with strong C influences it will
seem that way.

Rust is strongly influenced by OCaml and
inherits several elements of OCaml’s look
and feel (including it’s type annotations).

Rust brings many things that feel alien to
those with a C background:

● Variables are immutable by default
● Data structures move by default

○ Function arguments are passed
neither by-value nor by-reference

● Variables can be rebound
○ Same name - different types

● References can be cloned
○ Same name - different variable

● Variety of error handling syntax

Madrid 2024

The big three - rust-lang.org/learn
“the book”

The Rust Programming
Language is a narrative
introduction to Rust. It is
well structured and
introduces most, but not all,
of the language.

It can be accessed in HTML
form (free) and in paperback
or eBook format (paid).

rustlings

Introduces Rust features in
the form of bite sized
puzzles: typically fixing a
compiler error or writing a
function that passes a test.

Helps you get used to the
syntax and the compiler.

Rust by example

Well structured collection of
Rust code examples. Mostly
organized by language or
standard library features.

Makes a great companion
for the book. Especially
when you can’t remember
how to spell whatever it
was that you read in the
book a month ago.

https://www.rust-lang.org/learn

Madrid 2024

Let the tools teach you Rust
Put simply, you must integrate rust-analyzer into your editor (or change editors).

rust-analyzer is a “Rust compiler front-end for IDEs”. It provides check-as-you-type,
type information (as tooltips or inlay hints), function signature info, auto-complete, …

Rust is all about compile-time checking and there are lots of checks beyond borrow
checking. The compiler is strict but it is on your side: the quality of its diagnostics is very
good making the compiler a good teacher.

Configuring your editor to use rustfmt to format-on-save is also strongly recommended.
Especially when you are starting out since becoming used to the default Rust style is
useful.

Madrid 2024

Let clippy teach you Rust
Clippy is an a linting tool, that provided over 700 new checks to help you write better,
more idiomatic Rust code. Try: rustup component add clippy and cargo clippy

��

5 fn sum(nums: &Vec<i32>) -> i32 {
6 nums.iter().sum()
7 }

⇓

5 fn sum(nums: &[i32]) -> i32 {
6 nums.iter().sum()
7 }

> cargo clippy
warning: writing `&Vec` instead of `&[_]` involves a new
object where a slice will do
 --> src/main.rs:5:14
 |
5 | fn sum(nums: &Vec<i32>) -> i32 {
 | ^^^^^^^^^ help: change this to: `&[i32]`
 |
 = help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#
ptr_arg
 = note: `#[warn(clippy::ptr_arg)]` on by default

Madrid 2024

Let evcxr teach you rust
sh$ cargo install evcxr_repl
 Updating crates.io index
 …
 Compiling evcxr_repl v0.14.2
 Finished release [optimized] target(s) in 2m 43s
sh$ evcxr
Welcome to evcxr. For help, type :help
>> let x = -5;
>> if x > 0 { x } else { -x } as u32
Error: expected expression, found `as`
 ╭─[command:1:1]
 │
 1 │ if x > 0 { x } else { -x } as u32
 · ─┬
 · ╰── expected expression
───╯
>> (if x > 0 { x } else { -x }) as u32
5

Madrid 2024

Make Rust your scripting language
#!/usr/bin/env rustc

// The rust compiler
// treats #! on the first
// line as a comment.

// We only have the std
// library so I’d have to
// write a CSV parser from
// scratch.

use std::io;

fn main () {
 …
}

#!/usr/bin/env rust-script

// rust-script can be
// installed using cargo.

// Special comments give
// rust-script scripts
// access to crates:
// cargo-deps: csv

use csv::Reader;
use std::io;

fn main () {
 …
}

Create a playground
cargo init $HOME/toybox
cd $HOME/toybox
mkdir src/bin
mv src/main.rs \
 src/bin/hello.rs

Run hello from toybox
cargo run --bin hello

cargo auto-discovers
all programs found in
src/bin
cargo add csv
vim src/bin/csv2email.rs

Install hello and
csv2mail to cargo bindir
cargo install --path .

Madrid 2024

Make Rust your scripting language
use serde::Deserialize;
use std::{error::Error, io};

#[derive(Debug, Deserialize)]
struct MailAddr {
 #[serde(rename = "Name")] name: String,
 #[serde(rename = "Email")] email: String,
}

fn main() -> Result<(), Box<dyn Error>> {
 let mut reader =
 csv::Reader::from_reader(io::stdin());
 for row in reader.deserialize() {
 let row: MailAddr = row?;
 println!("{} <{}>", row.name, row.email);
 }
 Ok(())
}

import csv
import sys

reader = csv.DictReader(sys.stdin)

for row in reader:
 name = row["Name"]
 email = row["Email"]
 print(f"{name} <{email}>")

Madrid 2024

Make Rust your scripting language
use serde::Deserialize;
use std::{error::Error, io};

#[derive(Debug, Deserialize)]
struct MailAddr {
 #[serde(rename = "Name")] name: String,
 #[serde(rename = "Email")] email: String,
}

fn main() -> Result<(), Box<dyn Error>> {
 let mut reader =
 csv::Reader::from_reader(io::stdin());
 for row in reader.deserialize() {
 let row: MailAddr = row?;
 println!("{} <{}>", row.name, row.email);
 }
 Ok(())
}

import csv
import sys

reader = csv.DictReader(sys.stdin)
for (lineno, row) in enumerate(reader):
 try:
 name = row["Name"]
 email = row["Email"]
 except KeyError as exc:
 raise ValueError(
 f"Bad line {lineno+2}") from exc
 print(f"{name} <{email}>")

Madrid 2024

Aside: the right amount of curious
Run towards the flames

If something doesn’t feel right then figuring
out why is an important part of learning.

A good example occurs when navigating
data structures containing optional values.
Your code to handle the None case might
feel bulky or like you are charing into the
right margin. Consider that a clue to go and
(re-)read the reference documentation

Clue: it’s usually something that takes a
closure.

Don’t go down the rabbit hole

By making Rust your scripting language (or
finding other reasons to practice learning
the language) you are accepting a
productivity trade-off versus $OLDLANG. Be
careful not to get sucked in.

For example, derive macros are super
elegant and are part of what makes
writing Rust code more ergonomic. You
don’t need to understand how they work
on day 1 (or day 60).

https://doc.rust-lang.org/std/option/enum.Option.html

Madrid 2024

Advent of Code
Advent of Code is collection of small
programming puzzles, released
once-per-day during December (but
accessible throughout the year).

It’s a great way to learn any new
language.

In the case of Rust, taking part in
Advent of Code it is a great way to
better understand what sort of code is
“hard” to borrow check.

Madrid 2024

Embrace cargo
Cargo and the crates.io ecosystem allows Rust to
keep the scope of the standard library small. There
is no intent to extend the Rust standard library into
a Python-like “batteries included” library.

When library code is requires an experiences
Rustacean will review crates.io looking for well
maintained libraries that can help.

An alternative way to view this is that
cargo+crates.io are the included batteries.

 🪫 std

 🔋 std + crates.io

Madrid 2024

So… the batteries come from crates.io but how can I figure out which ones to use?

https://crates.io https://lib.rs https://blessed.rs

Embrace cargo

https://crates.io
https://lib.rs
https://blessed.rs

Madrid 2024

Make the right first steps
Rust “likes” …

… chewing through strings and vectors
… other “easy” memory management
… functional programming
… you to build on best-in-class crates
… finding problems for you

Rust doesn’t like…

… GUI libraries (maybe)

Rust loves…

… thread-safety
(so much so it might be easier to be single
threaded when learning the syntax)

Madrid 2024

A miscellany
Write in Rust

Rust is not C or C++ or JavaScript or Python or Modula-2
Don’t write C code using Rust syntax (c.f. Run towards the flames)

Read some Rust
Browse production Rust code (and try to figure out if its good/bad/meh)
If you are a kernel programmer spend a little time in userspace

Listen and reflect
Cargo and crates.io as “a thing”, Rust code defaults to static linking, Rust has strict
boundaries for dynamic libraries, Rust compile times are long, <insert your
favourite Rust sucks because here>

Madrid 2024

Some great YouTube content
Channels

Rust Talks by No Boilerplate

Crust of Rust by Jon Gjengs - long-form
tutorial videos by the author of the
(excellent) Rust for Rustaceans book

Single videos

"Type-Driven API Design in Rust" by Will
Crichton

https://www.youtube.com/playlist?list=PLZaoyhMXgBzoM9bfb5pyUOT3zjnaDdSEP
https://www.youtube.com/playlist?list=PLqbS7AVVErFiWDOAVrPt7aYmnuuOLYvOa
https://rust-for-rustaceans.com/
https://www.youtube.com/watch?v=bnnacleqg6k

Madrid 2024

Online reading list
● “the book”... yes… again (especially chapter 15)

● Other important Rust “books”
○ Asynchronous Programming in Rust
○ the Cargo book
○ Command Line Applications in Rust
○ “the nomicon” (unsafe Rust)

● The Rust Standard Library and docs.rs
○ std::iter::Iterator plus maybe the itertools crate
○ std::string::String

■ Comparing String to str primitive is also useful to learn how to navigate docs

use itertools::Itertools;

fn main() {
 std::io::stdin()
 .lines()
 .filter_map(|ln| ln.ok())
 .sorted_by_key(|ln| ln.len())
 .for_each(|ln| println!("{}", ln));
}

https://doc.rust-lang.org/book/
https://rust-lang.github.io/async-book/
https://doc.rust-lang.org/cargo/
https://rust-cli.github.io/book/index.html
https://doc.rust-lang.org/cargo/
https://doc.rust-lang.org/std/index.html
http://docs.rs
https://doc.rust-lang.org/std/iter/trait.Iterator.html#provided-methods
https://docs.rs/itertools/latest/itertools/
https://doc.rust-lang.org/std/string/struct.String.html
https://doc.rust-lang.org/std/primitive.str.html

Madrid 2024

How to teach yourself Rust

Read “the book” from cover to cover

Bring an empty cup

Use the tools

Make the right first steps

Be the right amount of curious

Get idiomatic 🤔

👣
⁉

🛠
📕

🥤

📕🥤🛠👣⁉🤔
support@linaro.org
training@linaro.org

mailto:support@linaro.org
mailto:training@linaro.org

