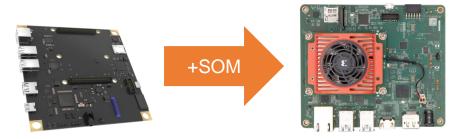


Linaro Connect *Kria Dynamic Board-ID* & Device Tree Selection

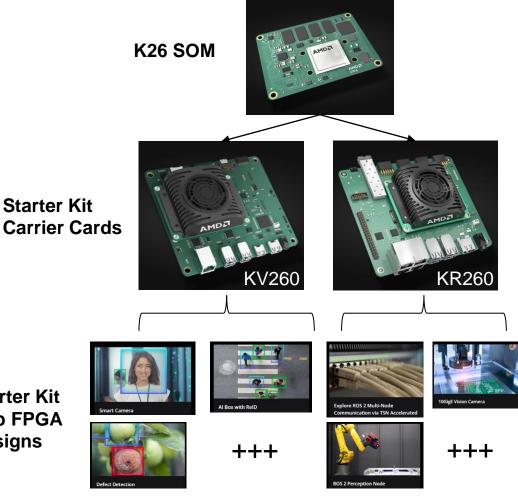
Wes Skeffington Michal Simek

What is a SOM vs. Carrier Card?


System-on-Module (SOM)

- HW platform abstraction for product development
- Plugged to carrier card for physical interfaces
- Kria SOM is small form-factor, flexible, embedded computer based on MPSoC
- Processor, runtime memory, nonvolatile boot memory, core clocks and power supplies
- Heat-spreader for thermal solution interface

Carrier Card (CC)


- Carrier card implements application specific physical peripherals & any unique HW requirements
- Simplified HW design as high-density digital components abstracted to SOM (e.g. DDR4 layout)
- CC provides a single 5V power input to SOM
- VCCO rails customized by CC design
- Dual 240 pin connectors provide access to CC defined PS & PL interfaces

Problem Statement

- **Goal**: Minimize number of unique FW design artifacts for supporting HW combinations
- **Solution:** Boot time HW identification, peripheral enablement, & dynamic PL loading
- Kria SoC SOMs present two layers of required HW abstraction
 - SOM to multiple Carrier Cards (CC) 0
 - 0 FPGA programmable hardware

Starter Kit App FPGA Designs

Madrid 2024

Technical Architecture – HW setup

- BOOT.BIN
 - O Single image with PMUFW, TF-A, U-Boot, DTBs
- Boot out of QSPI RAW (MTD layout)
- BootROM steps sectors with 32kB offset
 - O Image Selector
 - Boot logic based on Persistent Register (A/B)
 - Duplicated ImgSel Image to catch broken Flash sectors
 - Two catch partitions to protect against incorrect boot images
 - O Recovery Image
 - Web based application for board recovery
 - Initiated by invalid Boot image via ImgSel Catches
 - Via pressing FWUPD button
- Image A/B
- SOMs and CCs have i2c eeprom for identification
 - O In FRU format with using vendor extensions

0x00000000000-0x000004000000 : "nor0"					
: "Image Selector"					
: "Image Selector Golden"					
: "Persistent Register"					
: "Persistent Register Backup"					
: "Open 1"					
: "Image A (FSBL, PMU, ATF, U-Boot)"					
: "ImgSel Image A Catch"					
: "Image B (FSBL, PMU, ATF, U-Boot)"					
: "ImgSel Image B Catch"					
: "Open 2"					
: "Recovery Image"					
: "Recovery Image Backup"					
: "U-Boot storage variables"					
: "U-Boot storage variables backup"					
: "SHA256"					
: "Secure OS Storage"					
: "User"					

Technical Architecture – U-Boot Image preparation

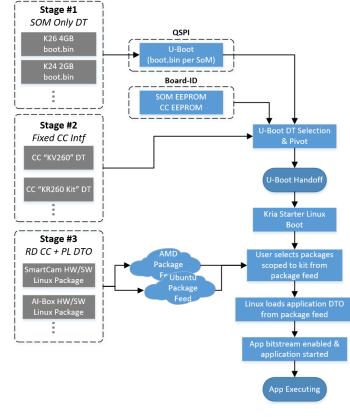
- Combine SOM + CC DTBs
- Create FIT image from DTBs with using regular expressions for configuration selection
- Boot SOM with minimal configuration
 - Do SOM and Carrier Card detection (based on i2c eeprom)
 - And do DTB RESELECTION in U-Boot

fdtoverlay	- 0	zynqmp-smk-k26-revA-sck-kv-g-revA.dtb -	-i	arch/arm/dts/zynqmp-smk-k26-revA.dtb arch/arm/dts/zynqmp-sck-kv-g-revA.dtbo
fdtoverlay	- 0	zynqmp-smk-k26-revA-sck-kv-g-revB.dtb -	-i	arch/arm/dts/zynqmp-smk-k26-revA.dtb arch/arm/dts/zynqmp-sck-kv-g-revB.dtbo
fdtoverlay	- 0	zynqmp-smk-k26-revA-sck-kr-g-revA.dtb -	-i	arch/arm/dts/zynqmp-smk-k26-revA.dtb arch/arm/dts/zynqmp-sck-kr-g-revA.dtbo
fdtoverlay	- 0	zynqmp-smk-k26-revA-sck-kr-g-revB.dtb -	-i	arch/arm/dts/zynqmp-smk-k26-revA.dtb arch/arm/dts/zynqmp-sck-kr-g-revB.dtbo
fdtoverlay	- 0	zynqmp-sm-k26-revA-sck-kv-g-revA.dtb -i	ii	arch/arm/dts/zynqmp-sm-k26-revA.dtb arch/arm/dts/zynqmp-sck-kv-g-revA.dtbo
fdtoverlay	- 0	zynqmp-sm-k26-revA-sck-kv-g-revB.dtb -i	ii	arch/arm/dts/zynqmp-sm-k26-revA.dtb arch/arm/dts/zynqmp-sck-kv-g-revB.dtbo
fdtoverlay	- 0	zynqmp-sm-k26-revB-sck-kr-g-revB.dtb -i	iā	arch/arm/dts/zynqmp-sm-k26-revA.dtb arch/arm/dts/zynqmp-sck-kr-g-revB.dtbo

configurations {

default = "config_1"; config 1 {

fdt = "base":


description = "system-top";

```
};
                                                                    config_2 {
                                                                             description = "zyngmp-smk-k26-.*-sck-kr-g-revA";
                                                                             fdt = "fdt-zyngmp-smk-k26-revA-sck-kr-g-revA";
static char *board name = DEVICE TREE;
                                                                     };
                                                                     config 3 {
int maybe unused board fit config name match(const char
                                                                             description = "zyngmp-smk-k26-.*-sck-kr-g-.*";
                                                                             fdt = "fdt-zyngmp-smk-k26-revA-sck-kr-a-revB":
        debug("%s: Check %s. default %s\n". func . name
                                                                     };
                                                                     config 4 {
#if !defined(CONFIG SPL BUILD)
                                                                             description = "zyngmp-smk-k26-.*-sck-kv-g-rev[AZ]"
        if (IS ENABLED(CONFIG REGEX)) {
                                                                             fdt = "fdt-zyngmp-smk-k26-revA-sck-kv-g-revA";
                struct slre slre;
                                                                     };
                int ret;
                                                                     config 5 {
                                                                             description = "zyngmp-smk-k26-.*-sck-kv-g-.*";
                ret = slre compile(&slre. name):
                                                                             fdt = "fdt-zyngmp-smk-k26-revA-sck-kv-g-revB";
                if (ret) {
                                                                     };
                                                                     config 6 {
                         ret = slre match(&slre, board name
                                                                             description = "zyngmp-sm-k26-.*-sck-kv-g-rev[AZ]";
                                          NULL):
                                                                             fdt = "fdt-zyngmp-sm-k26-revA-sck-kv-g-revA";
                        debug("%s: name match ret = d\n"
                                                                     };
                         return !ret:
                                                                     config 7 {
                                                                             description = "zyngmp-sm-k26-.*-sck-kv-g-.*";
                                                                             fdt = "fdt-zyngmp-sm-k26-revA-sck-kv-g-revB";
#endif
                                                                     };
                                                                     config 8 {
        if (!strcmp(name, board name))
                                                                             description = "zyngmp-sm-k26-.*-sck-kr-g-.*";
                return 0;
                                                                             fdt = "fdt-zyngmp-sm-k26-revB-sck-kr-g-revB";
                                                                    };
        return -1:
```


Technical Architecture — Peripheral Enable, DT Selection, DT Overlays

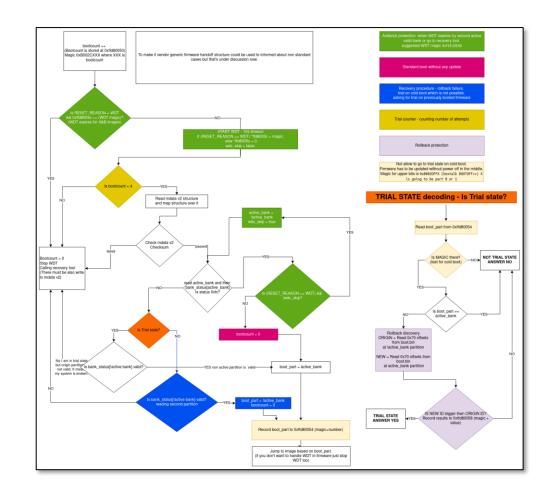
- HW/SW boundaries split into three incremental domains:
- 1. Initial boot DT for U-Boot (SOM only)
- 2. CC DT swap (SOM + CC)
- 3. FPGA DT overlay (dynamic load/unload)
- Key SW components
 - U-Boot + PMU config object loading
 - Decoupled Linux dynamic DT selection & loading
 - Linux *fpga-mgr* + AMD *libdfx*
 - o Linux DT overlays
- Challenges
 - PL peripheral driver clean load/unload from active DT
 - Upstream support of DT overlays
 - Limited to references to customers for production deployments

Example Applications

- SOM has high-adoption in areas with high application I/O diversity within a given customer
 - O Industrial I/O
 - O Industrial controllers
 - O Healthcare
 - O Vision systems
- Dynamic platform capabilities allow for reuse not just in HW design but also in shared FW and SW infrastructure components.
 - O Reduced design artifact development & maintenance
 - O Reduced life-cycle costs through shared/common updates
 - Faster time to market through abstracted HW and SW coupling

Next Steps

- Collaboration with Linux community for DT overlays in upstream
- Canonical Ubuntu:
 - libdfx + dfx-mgr inclusion in Ubuntu archive
 - AMD FPGA SoC stable (PS & PL) driver integration in Ubuntu LTS
 - DKMS based integration for customer PL & new FPGA IP drivers
- Linaro collaborations:
 - fpga-mgr, libdfx, dfx-mgr inclusion in Linaro TRS
 - Dynamic FPGA load/unload testing inclusion in LAVA
 - SystemReady-IR (LVFS, fwupd integration)
 - DTB FIT generation via binman (but without placing binman node to DT)
 - A/B update based on mdata v2 (in progress)



Thank you

A/B Update – mdata v2

- Reusing persistent register MTD
- ImgSel changes adopt mdata v2
- ImgSel catch changes
- Image Recovery changes
- Roll back protection with WDT
- Using mdata protection for SOC extension

