
Arm CCA open-

source enablement 

update

Dan Handley



Madrid 2024

Agenda

● Arm CCA recap

● Arm CCA 1.0 status and getting started

● Arm CCA 1.1 features

● What to expect next



Madrid 2024

Arm CCA recap

● Realm Management Extensions (RME):

Armv9-A CPU and system hardware architecture, enabling the creation of isolated, 

dynamic, attestable, and trustworthy execution environments

○ Suitable for securing mainstream compute workloads such as containers or virtual-machines

● Arm Confidential Compute Architecture (Arm CCA):

Builds on RME by providing a reference security and software architecture

○ Used to implement a hypervisor-based platform supporting confidential computing

○ Open architecture, assessed using formal methods

○ Supported by popular open-source projects including Trusted Firmware and Linux / KVM,

reducing time to market and avoiding the expense of proprietary solutions



Madrid 2024

Arm CCA stack

Armv9-A CPU and System Architecture

Reference Security & Software Architecture

Reference Firmware

Operating System & Hypervisor Enablement

RME

Arm CCA
(Built-on RME)

Service Enablement (e.g. software for Attestation)



Madrid 2024

TF-A Monitor

OPTEE

Non-secure Secure

Hafnium SPM

Trusted 

Services
TA

Arm CCA Realm

Linux / KVM

Linux

Virtual 

Machine

OS Virtual 

Machine

RMI

Linux VM OS VM

EDKII EDKII

Kernel Kernel

RSI

RSE (Runtime Security Engine),

TF-M Arm reference platform

Arm CCA open-source reference components

RSI

RSI: Realm Service 

Interface

RMI: Realm 

Management Interface

TF-RMM



Madrid 2024

Arm CCA 1.0 (stack for RMM spec 1.0)

● Enables protection of CPU state and memory contents owned by a realm

○ Minimum Viable Product

● Final RMM 1.0 spec (EAC5) released in Oct 2023

● TF-A / TF-RMM support upstream since Jan 2024

○ Public Linux / KVM / EDK2 branches available at same time on https://gitlab.arm.com/

● Latest Linux / KVM patches based on v6.9-rc1 on list since Apr 2024

○ kvm-unit-test patches too

● Latest EDK2 patches (realm guest firmware) on list since Apr 2024

https://developer.arm.com/documentation/den0137/1-0eac5/
https://www.trustedfirmware.org/projects/tf-a
https://www.trustedfirmware.org/projects/tf-rmm
https://gitlab.arm.com/
https://lore.kernel.org/all/20240412084056.1733704-1-steven.price@arm.com/T/#u
https://lore.kernel.org/all/20240412103408.2706058-1-suzuki.poulose@arm.com/T/#u
https://edk2.groups.io/g/devel/message/117716


Madrid 2024

Getting started

● Shrinkwrap tool supports CCA configs for latest component tree builds

○ Standard configurations available using public branches, for example cca-3world.yaml

○ Can use overlay configurations

■ for example, to build a custom kernel against the latest stable versions of other components

○ Runs on Base Fixed Virtual Platform (FVP)

● Integrated stack also available in Base FVP and Fremont solution releases

○ Latter runs on Neoverse V3 Infrastructure FVP

● Arm learning paths help accelerate application development with Arm CCA

○ Get Started with RME

○ Create a VM in a realm using Arm CCA

○ Coming soon: Run an application in a realm using Arm CCA

https://git.gitlab.arm.com/tooling/shrinkwrap
https://developer.arm.com/Tools%20and%20Software/Fixed%20Virtual%20Platforms
https://gitlab.arm.com/aemfvp-a/docs/aemfvp-a-docs/-/blob/main/aemfvp-a-rme/user-guide.rst
https://gitlab.arm.com/infra-solutions/reference-design/docs/infra-refdesign-docs/-/blob/main/docs/platforms/rdfremont.rst
https://developer.arm.com/downloads/-/arm-ecosystem-fvps
https://learn.arm.com/learning-paths/cross-platform/cca_rme/
https://learn.arm.com/learning-paths/servers-and-cloud-computing/rme-cca-basics/


Madrid 2024

CCA 1.1 features – needed for initial deployments

● Memory Encryption Contexts (MEC)
○ Physical memory contents of each Realm protected using a unique key or tweak

● Multiple signers
○ Require firmware image to be endorsed by multiple authorities, for example vendor plus a trusted auditor

● Planes
○ Multiple privilege levels within a Realm, orthogonal to traditional kernel / user-space split

● Device Assignment (DA)
○ Enable trusted device functions to be admitted into a Realm’s TCB, and granted DMA

● Host Debug of Realm

○ In a controlled environment, enable host to debug a realm (bypassing CCA security guarantees)

● Live firmware activation
○ Update firmware image(s) while workloads continue to run, with minimal loss of availability

○ Replace platform firmware (for example, RMM) with an image supplied by the non-secure host

Further strengthen the security guarantees provided to end users (Realm owners)

Allow platform owners additional flexibility, in deploying and updating firmware

Enable migration of workloads from non-secure VM to Realm, by providing feature parity



Madrid 2024

Arm CCA 1.0

● TF-RMM impact: Small

○ Enforce MEC ID uniqueness

Realm 1 Realm 2 Realm 3

RMM

Realm 1

RD PTsRECs

Realm 2 Realm 3

RMM

MECID = R1 MECID = R2 MECID = R3

PTsPTsS2 TTs

MECID = RMMKey = Realm PAS

Isolation Boundary

+ MECCrypto Boundary

● Realm guest Linux impact: Zero

● Host Linux/KVM impact: X-Small

○ Allocate a MECID for each Realm

RD PTsRECs

PTsPTsS2 TTs

RD PTsRECs

PTsPTsS2 TTs

RD PTsRECs

PTsPTsS2 TTs

RD PTsRECs

PTsPTsS2 TTs

RD PTsRECs

PTsPTsS2 TTs



Madrid 2024

Planes requirements

● In addition to the main guest OS and user 

workload, allow the contents of a Realm to 

include other software components (Planes)

○ For example, a security service like vTPM

● Provide isolation within a Realm, allowing 

privilege separation between the Planes

○ All Planes have Same IPA → PA mappings 

but IPA memory permissions may differ

● Allow the host hypervisor to continue treating 

the Realm as a single unit, for the purposes of 

resource allocation, scheduling and migration

● Within the Realm, privileged Plane 0 assigns 

resources to the other Planes

Realm

Plane 0 (Paravisor) Plane N (OS)

vTPM

UEFI

NVRAM 

emulation

Paravisor Linux kernel

App App

RMM

EL1

EL0

EL2



Madrid 2024

Planes SW impacts
● TF-RMM impact*: Large

○ Validate RMI Realm Translation Table (RTT) 
commands and create Stage2 page tables

○ Implement Plane entry/exit

● Realm guest Plane 0 impact: Medium -> Large

○ Create/enlighten Paravisor to manage guest Planes 
(for example, schedule PN vCPUs, emulate RSI, …)

○ Solutions under investigation - currently out of scope 
for reference solution

● Realm guest Plane N Linux impact: X-Small

○ Expect Plane N to use (a subset of) RSI to 
communicate with Plane 0

○ Note, Planes are optional; CCA continues to support 
(RSI-enlightened) Linux guests without Planes

● Host Linux/KVM impact*: Medium

○ Use RMI to program RTTs per plane

○ Minimal impact on VMM

Realm

Plane 0 Plane N

Linux

RMM

EL1

EL2 KVM

Non-secure stateRealm state

RMI

RSI

(subset)

Paravisor

RSI

* Need 2 backends to cater for availability of 

S2PIE/S2POE CPU architecture features



Madrid 2024

Device Assignment (DA) requirements

● Allow hypervisor to assign a PCIe TDISP device to a 
Realm

○ Also support coherently-attached devices, such as CXL 
instances*

○ Also support on-chip PCIe devices*

● Allow Realm to attest the identity and configuration of the 
device function

● Device lifecycle guarantees that

○ DMA is blocked until device has been approved by the 
Realm

○ Any changes in device configuration cause transition to an 
error state, which revokes DMA

○ Once removed from a Realm, device guarantees that it will 
scrub confidential state

● Management of device lifecycle must be standards-
based

○ RMM must not require any device-specific knowledge

○ However, RMM will require knowledge of platform topology

CONFIG_

UNLOCKED
ERRORRUN

CONFIG_

LOCKED
Host configures device 

and then
(via RMM) requests 
configuration to be 

locked

Realm attests device 
and accepts into its 

TCB

Device can DMA 
Realm memory

TDISP (Trusted Device Security Interface Protocol) lifecycle

* Note, not supported by any CC architecture yet



Madrid 2024

DA SW impacts

● Plan to enable foundation PCIe TDISP DA then expand use-cases

● TF-A / TF-RMM impact: Large (foundation) -> X-Large (advanced)

○ Implement DA ABIs and integrate PCIe standard reference libs to enforce device lifecycle

○ SMMU S2 driver + SMMU S1 emulation + PCIe root port programming

● Realm guest Linux impact: Large (foundation) -> X-Large (advanced)

○ Generic PCIe / driver support for trusted devices

■ Irrespective of whether running on Confidential-Compute (CC) or non-CC VMs

○ Community Drive: Linux Foundation CC Consortium (CCC) – Linux Kernel SIG

■ Driven by PCI Dev maintainer

○ Arch specific backends for TDISP will plug in to CCA interface hooks

● Host Linux/KVM impact: Large (foundation) -> X-Large (advanced)

○ DA enlightenment (use new RMIs to control device lifecycle)

○ UABI for VMM to describe DA devices – shared across architectures

○ SMMU stub (for interrupt management) for RMM SMMU Driver

https://confidentialcomputing.io/about/committees/


Madrid 2024

Live firmware activation

Monitor

RMM Hyp

Create
Realms

Prime
new image
(IMP DEF)

Activate

Monitor

RMM

Realms

Hyp

Monitor

RMM RMM’

Realms

Hyp

Monitor

RMM’

Realms

HypRMM

Requirement: RMM live activation under running Realms



Madrid 2024

Live firmware activation

Monitor

RMM Hyp

Monitor

RMM’

Realms

HypRMM

Monitor

RMM’ HypRMM

Monitor

RMM RMM’ Hyp Activate
Create
Realms

Prime
new image
(IMP DEF)

Requirement: RMM installation during hypervisor boot



Madrid 2024

Live firmware activation impacts

● TF-A / TF-RMM impact: Medium -> Large

○ Create staging area for new firmware and transfer live state to new image

○ Live activating an arbitrary firmware version is hard – may need to restrict use-cases initially

■ For example, limit to specific code sections or require new version to be data compatible

■ Will focus on RMM and BL31 (EL3 firmware) live activate initially

■ Live activating the latter is especially hard (for example, may require CPU reset)

○ Can increase use-cases over time (for example, by versioning data structures)

○ Also need hooks to authenticate new firmware and to update firmware measurement log

■ Actual authentication is platform specific

● Realm guest Linux impact: None (hopefully)

● Host Linux/KVM impact: Medium

○ Use new ABIs to provide cycles to prime/activate new firmware

○ May need to quiesce activity and rendezvous CPUs during activation phase



Madrid 2024

What to expect next

● Continued upstreaming of CCA v1.0 

Linux / KVM patches

● Monthly releases of RMM v1.1 spec

○ ALP with early DA / Planes support 

available now

○ Individual features will reach BET 

through the year, as they mature

● Collaborative development of CCA 

v1.1 SW (prototyping in progress)

● Regular public stack drops of CCA

v1.1 as spec features reach BET

(using Shrinkwrap)

● Final RMM v1.1 spec (EAC)

● Upstreaming of non-DA-related CCA 

v1.1 features as they mature

○ Much quicker for TF projects than

Linux / KVM

● Continued development of CCA v1.1 DA 

features and start upstreaming 

foundation support

● Quarterly Arm solution releases of 

integrated stack with CCA v1.1 features

2024 2025

2026First Deployments

https://developer.arm.com/documentation/den0137/latest/


Thank you


	Slide 1: Arm CCA open-source enablement update
	Slide 2: Agenda
	Slide 3: Arm CCA recap
	Slide 4: Arm CCA stack
	Slide 5: Arm CCA open-source reference components
	Slide 6: Arm CCA 1.0 (stack for RMM spec 1.0)
	Slide 7: Getting started
	Slide 8: CCA 1.1 features – needed for initial deployments
	Slide 9: Arm CCA 1.0
	Slide 10: Planes requirements
	Slide 11: Planes SW impacts
	Slide 12: Device Assignment (DA) requirements
	Slide 13: DA SW impacts
	Slide 14: Live firmware activation
	Slide 15: Live firmware activation
	Slide 16: Live firmware activation impacts
	Slide 17: What to expect next 
	Slide 18

