
Enhancements in
WindowsPerf
Everton Constantino (Linaro)
Przemyslaw Wirkus (arm)

Madrid 2024

Introduction
● WindowsPerf is Windows on Arm project.
● Linux perf inspired lightweight WOA performance profiling tool. Profiling is based on

ARM64 PMU (Performance Monitor Unit) and its hardware counters.
● Technical objective:

○ Provide Arm PMU based performance monitoring tool inspired by Linux perf.
○ Support core PMU, DSU and DMC, and more.

● Architecture:
○ “wperf-driver” - signed Windows Kernel Driver.
○ “wperf”: Command line tool.

Madrid 2024

WindowsPerf + Telemetry Solution
● Topdown-tool.

○ Example top-down analysis for both WindowsPerf and Linux perf (as a backend).
● Telemetry Solution JSON meta-data integration with WindowsPerf.

○ Telemetry Solution meta-data integration with WindowsPerf CLI.
○ Events, metrics and groups of metrics.
○ Auto-detection of supported CPUs (neoverse n1/v1/n2).

● ustress integration with WindowsPerf test suite.
○ WOA Native ustress built from sources (clang).
○ Micro-benchmarks are used as workloads and TS metrics are used to monitor those.
○ Indirect proof of WindowsPerf correctness.

Madrid 2024

WindowsPerf Design Decisions
● WindowsPerf:

○ BSD permissive license.
○ Full integration with Telemetry Solution: events, metrics, group of metrics, platform detection.
○ Integration with existing Windows ecosystem: WPR, WPA, ETW.

● Kernel driver:
○ Windows Kernel driver wrapps access to Arm hardware.
○ Mutually exclusive access to the driver (lock/unlock feature).
○ Smart PMU resources acquire / release.

● Command line tool:
○ Command line interface and console output inspired by Linux perf.
○ `wperf` outputs results in JSON format.

Madrid 2024

WindowsPerf Ecosystem

The road from London to Madrid

April 2023 - May 2024

Madrid 2024

Where were we at Linaro Connect 2023?

WindowsPerf 2.4.0 (April 2023)
Release highlights:
● Sampling.
● DLL symbol resolution.
● New tool wperf-devgen to the project. It simplifies how users

install/uninstall our Kernel driver.
● First proper binary release of the wperf-driver.
● Improved Kernel driver stability.
● Improvements to timeline feature.
● JSON output.

Madrid 2024

Where are we and what were the major changes?

We had more than 9 releases with bug fixes and new features
● Major app and bug fixes, memory leaks removed and stability highly improved.
● We no longer require all GPCs to be available to install the driver.
● New record command added. Processes can now be spawned directly from the

command line and pinned to a single core. This works with both sampling and
counting.

● Basic export to perf.data file format.
● Introduction of the C/C++ lib allowing users to add software tracing to their software

without having to spawn the CLI.
● Basic driver configuration through command line with --config
● Major upgrades to our testing infrastructure.
● Disassembly support for sampling.

WindowsPerf 3.3.3 (March 2024) - Stable release

Madrid 2024

WindowsPerf 3.5.0 (April 2024) - Beta release

● Locking and unlocking driver access
● Acquire and release PMU resources
● Early seeds for Device Tree support
● Prototype for ETW output

Madrid 2024

Record - spawning processes from CLI
● Users are no longer required to spawn the process manually to sample it. Neither is

the user required to set the process’s affinity mask manually.
● When using hardware with more than 64 cores Windows break the cores into

processor groups making it quite hard to using the start /affinity command as
you cannot specify the processor group.

● It is not possible to directly set the spawned process’s core affinity with the required
flexibility so the solution was to actually changed the individual thread’s affinity. This
enabled WindowsPerf to pin workloads to any core.

● This feature is available in sampling through the record command and also with
stat. All you need to do is set the CPU with -c and by the end of the command just
append -- to start defining the command line of the process that is going to be
spawned, e.g. wperf record -e vfp_spec -c 0 --
WindowsPerfSample.exe

Madrid 2024

WindowsPerfSample - simd_hot

#define SIMD_LOOP_LIMIT 10000
50: void simd_hot(unsigned int * __restrict a, unsigned int * __restrict b, unsigned int *
__restrict c)
51: {
52: for (int i = 0; i < SIMD_LOOP_LIMIT; i++)
53: a[i] = b[i] + c[i];
54: }

https://gitlab.com/everton.constantino/windowsperfsample

https://gitlab.com/everton.constantino/windowsperfsample

Madrid 2024

Sampling WindowsPerfSample
wperf record -e ld_spec:FREQUENCY -c 0 --timeout 120 --annotate -- WindowsPerfSample.exe

Madrid 2024

Disassembly output support for sampling
● Using the Debug Interface Access SDK along with LLVM’s objdump we read the PDB

files available and try to show the disassembly around the code hotspots for each
event.

● The results are separated per event per function. Due to address skid sometimes the
address is not 100% accurate.

Madrid 2024

Disassembling WindowsPerfSample’s
simd_hot

Madrid 2024

WindowsPerf Library
● What it is not - A way to directly access the WindowsPerf driver interface bypassing

the WindowsPerf application commands.
● What it actually is - A way to replicate the CLI functionality directly with functions like

wperf_sample, wperf_stat, wperf_list, wperf_version
● Majorly contributed by Qualcomm team

Madrid 2024

Locking and unlocking driver access
● This enables easier control over other people stopping workflows that run for a

considerable amount of time.
● Up until version 3.3.3 the WindowsPerf Driver is set to have exclusive access. This

means that no calls to DeviceIoControl can be made if one is already in
execution.

● The driver has no way to know that another application is requiring access, this
makes it impossible to even open the application as communication with the driver is
required for startup.

● Version 3.5.0 onwards includes a new lock/unlocking mechanism. When a call is
made to the driver it checks it’s internal state to verify if it is in use and if the current
owner matches with file handle stored at the acquisition of the lock.

● In case an error occurs there is the possibility of running a command with
--force-lock to clear all current locks in the driver.

Madrid 2024

Acquire and releasing PMU resources
● Up until version 3.3.3 when the WindowsPerf driver was installed it queried the OS for

available GPCs and allocated all of them. This persisted for as long as the driver was
installed and aimed at test devices that had dedicated GPCs.

● WindowsPerf grew and we now understand that it needs to co-exist with other
Windows ecosystem performance tools like XPerf.

● XPerf is part of a wider range of tools that live inside the Windows Performance
Toolkit and can, as one of its functionalities, measure PMU events.

● To make sure XPerf, and other tools, could be enabled it was required that
WindowsPerf only allocated GPCs during the time the commands were actually being
executed. We decided, for now, that when the lock lifetime was also going to be the
lifetime for the PMU resource allocation.

● Now users can start XPerf and then run WindowsPerf which will make sure to just use
remaining resources.

Madrid 2024

Intermission - Windows Performance Toolkit
● Microsoft’s ETW or Event Tracing for Windows is a mechanism to trace and log

events. There are several tools and APIs to read and write to ETW, the most readily
available is EventViewer.

<Event
xmlns="http://schemas.microsoft.com/win/2004/08/events/event ">

<System>
<Provider Name="X" Guid="X" EventSourceName ="X" />
<EventID Qualifiers ="X">X</EventID>
<Version>0</Version>
<Level>4</Level>
<Task>0</Task>
<Opcode>0</Opcode>
<Keywords >0x8080000000000000</ Keywords >
<TimeCreated SystemTime ="X />
<EventRecordID >95081</ EventRecordID >
<Correlation />
<Execution ProcessID ="X" ThreadID ="X" />
<Channel>X</Channel>
<Computer >X</Computer >
<Security UserID="X" />

</System>
<EventData >

<Data Name="param1" >X</Data>
<Data Name="param2" >X</Data>
<Data Name="param3" >X</Data>
<Data Name="param4" >X</Data>

</EventData >
</Event>

http://schemas.microsoft.com/win/2004/08/events/event

Madrid 2024

WindowsPerf PMU tracing with ETW output - Beta
feature

● Now the WindowsPerf App and Driver each can be controlled to output to ETW via a build
configuration macro called ENABLE_ETW_TRACING and ENABLE_ETW_TRACING_APP

● We plan to release driver versions without ETW enabled to reduce overhead.
● The data template for the driver and application is different because they have distinct information

about the events being traced. The application trace can provide more details but the driver is
more precise.

● In order to make the Windows Performance Analazyer properly interpret the events we developed
the WPA-plugin-ETL that is aware of the data template, parses them and produces the required
tables and graphs.

Madrid 2024

App and Driver ETW output in WPA with our custom
ETL plugin

Madrid 2024

Overview

Madrid 2024

WindowsPerf Ecosystem

Reads ETL files and with
the help of our WPA-etl
plugin interprets the data

WPA with WindowsPerf
ETL Plugin

Register the session’s
ETW traces to ETL file

Windows Performance
Recorder

Performance
measurements. Traces
inserted onto ETW

WindowsPerf

ETW

Madrid 2024

Device Tree - The road towards custom IP blocks
● Writing any changes to the current driver is complicated and very error prone.
● Customers want to write drivers for their own IP blocks but keep all the user level

features.
● Version 3.5.0-beta adds the detect command. Current architecture required all

drivers to use the same GUID as the WindowsPerf Driver.
● Drivers should provide their capabilities as core, dsu, dmc, or spe along with

operations they provide like stat or sampling.

Madrid 2024

Visual Studio Extension and WPA-Plugin

Madrid 2024

WindowsPerf Roadmap to 4.x
● Driver resource lock / Unlock [DONE].

○ WindowsPerf user-space process is now exclusive with lock in the driver.
○ Concurrent `wperf` process will gracefully exit if other `wperf` process is „counting”.

● Arm Statistical Profiling Extension (SPE) investigation and support [IN PROGRESS].
○ The Statistical Profiling Extension is an optional feature in ARMv8.2.
○ Requires both Kernel Driver and user-space application improvements.
○ PMU(s) suffers from a problems of event skid and blind spots.

● Output to Event Tracing for Windows (ETW) trace stream [IN PROGRESS].
○ ETW provides a mechanism to trace and log events that are raised by user-mode

applications and kernel-mode drivers.
● Disassembly on annotate [DONE].

○ Increase sampling resolution to instruction level.
● Beyond 4.x:

● Packaging to a installer: bundle of WindowsPerf + VS-extension + WPA-plugin.
● “Device tree” feature - support many WindowsPerf device drivers.
● Other IP blocks.

Madrid 2024

Reference
Blog Posts

● Introducing 1.0.0-beta release of WindowsPerf Visual Studio extension
● Introducing the WindowsPerf GUI: the Visual Studio 2022 extension
● Announcing WindowsPerf: Open-source performance analysis tool for Windows on Arm
● WindowsPerf Release 2.4.0
● WindowsPerf Release 2.5.1
● WindowsPerf Release 3.0.0
● WindowsPerf Release 3.3.3

External Documentation
● Perf for Windows on Arm (WindowsPerf) @ Arm Learning path
● Get started with WindowsPerf @ Arm Learning Path
● Sampling CPython with WindowsPerf @ Arm Learning Path

https://www.linaro.org/blog/introducing-1-0-0-beta-release-of-windowsperf-visual-studio-extension/
https://www.linaro.org/blog/introducing-the-windowsperf-gui-the-visual-studio-2022-extension/
https://community.arm.com/arm-community-blogs/b/infrastructure-solutions-blog/posts/announcing-windowsperf
https://www.linaro.org/blog/windowsperf-release-2-4-0-introduces-the-first-stable-version-of-sampling-model-support/
https://www.linaro.org/blog/windowsperf-release-2-5-1/
https://www.linaro.org/blog/windowsperf-release-3-0-0/
https://www.linaro.org/blog/windowsperf-release-3-3-3/
https://learn.arm.com/install-guides/wperf/
https://learn.arm.com/learning-paths/laptops-and-desktops/windowsperf/
https://learn.arm.com/learning-paths/laptops-and-desktops/windowsperf_sampling_cpython/

Madrid 2024

Additional Resources
● Arm Telemetry Solution @ Arm Developer
● Topdown-tool Install Guide @ Arm Learning Path
● Arm CPU Telemetry Solution Topdown Methodology Specification @ Arm Developer

https://developer.arm.com/Performance#f-navigationhierarchiestopics=Telemetry&aq=%40navigationhierarchiescategories%3D%3D%22Performance%22&numberOfResults=48
https://learn.arm.com/install-guides/topdown-tool/
https://developer.arm.com/documentation/109542/0100/Introduction/Useful-resources

Thank you

