
Gunyah Accelerator for Qemu
Srivatsa Vaddagiri
Principal Engineer, Qualcomm India Private Limited

Snapdragon and Qualcomm branded products are products of Qualcomm Technologies, Inc. and/or its subsidiaries. Gunyah is a product of Qualcomm Innovation Center, Inc.

Madrid 2024

Agenda

● Gunyah Hypervisor

● Gunyah Linux kernel driver

● Qemu support

3

What is GunyahTM Hypervisor Software ?

• Hypervisor solution implemented by
Qualcomm Technologies, Inc.

• EL2 Hypervisor is small microkernel

• “Resource Manager” VM implements policy
for EL2 & runs isolated from other VMs

CPU

OS

APP APP

Gunyah Hypervisor

OS

Hypervisor Access Control

• Multi-OS Support
• Smaller Attack surface

RM

EL2

EL1

EL0

Getting the source:
github.com/quic/gunyah-hypervisor

Madrid 2024

Gunyah Key Features

● VM types supported

○ Confidential VMs – Guest memory is protected from host

○ Untrusted VMs – Guest memory can be accessed by host

● Confidential VM types:

○ Trusted VM

■ Hypervisor enforces VM image authentication by
Qualcomm Trustzone before letting VM start

■ VM image include device-tree

○ Google VM

■ VM image authentication outside scope of hypervisor

■ Typically authenticated by PVM firmware – a software
blob that runs first as part of VM (before main image)

Madrid 2024

Gunyah Key Features

● VM types supported

○ Confidential VMs – Guest memory is protected from host

○ Untrusted VMs – Guest memory can be accessed by host

● Confidential VM types:

○ Trusted VM

■ Hypervisor enforces VM image authentication by
Qualcomm Trustzone before letting VM start

■ VM image include device-tree

○ Google VM

■ VM image authentication outside scope of hypervisor

■ Typically authenticated by PVM firmware – a software
blob that runs first as part of VM (before main image)

● Confidential VMs

○ VM memory is private (isolated from an untrusted
host via page-table based protection)

○ Additional shared memory possible

■ Memory shared between host and guest

■ Shared memory to be assigned by host
before guest starts

■ No runtime API for guest to share its
private memory

○ Interrupt virtualization at EL2

○ SMMU based protection from malicious devices

○ VCPU scheduler – both proxy and hypervisor
native mechanisms supported

○ MMIO windows (0 - 1GB is allowed for emulation)

○ Wipe memory at warm reset

Madrid 2024

Gunyah – Key features (contd ..)
● Pre-host VMs

● Inter VM communication

○ Shared Memory

○ Doorbell

○ Message Queue

● Demand Paging of VM memory

● Device Passthrough

● Meet automotive requirements

● Performance optimized for mobile/auto/IoT use

cases

Madrid 2024

RM driverVCPU

Scheduler

VM Manager

VM Memory

Manager

IOEVENTFDIRQFD

Hypervisor

API

Gunyah Hypervisor

RM

Gunyah QCOM Extension

Driver

Gunyah Driver

CrosVM Qemu● Assists a VMM in VM management

functions

● V17 posted upstream by Elliot Berman

● UAPI:

○ Create VM, VCPU

○ RUN VCPU

○ Register eventfd for IRQ injection or
notification of IO access by VM

○ Start VM

○ Share or Lend memory to VM.
Lending supported by driver variant
in ACK

○ Specify Device Tree location

○ Set boot VCPU’s initial register
context

○ Set Firmware Configuration (Android
specific)

● Future changes?

○ Support for additional VM types
(Trusted VMs and untrusted VM)

○ Device Assignment

Linux Gunyah Driver

EL0

EL1

EL2

https://lore.kernel.org/all/20240222-gunyah-v17-0-1e9da6763d38@quicinc.com/

Madrid 2024

Gunyah Accelerator for Qemu

● Work in progress (not merged yet). V2 RFC patches posted

● Supports bring up VM (both confidential and unprotected types). Virtio-PCI devices have

been tested.

○ Tested on both Qualcomm SoC and Qemu virtual platform (running open-source Gunyah)

● Supported only for AARCH64 target
./qemu-system-aarch64 -machine virt --accel gunyah …

● VM Creation = GH_CREATE_VM

● VCPU creation = GH_VM_ADD_FUNCTION(GH_FN_VCPU, …id=vcpu_id)

● arm virt machine Changes

○ Confidential Guest support

○ Device Tree Customization

https://lists.nongnu.org/archive/html/qemu-devel/2024-05/msg03322.html

Madrid 2024

Confidential Guests

● Hypervisor-assisted confidential guests

● Guest memory – split into private portion and optionally a

shared portion

○ Private portion – memory not accessible by host

■ Used for Guest kernel and application text/data

○ Shared portion – memory shared with host

■ Data that needs to be shared with host (ex: virtio)

● Hypervisor guarantees that the private portion is not visible to

host (page-table based protection)

● Optional parameter, swiotlb-size, specifies the shared portion

size

● Device Tree changes:

○ Add “/reserved-memory/restricted_dma_reserved” node whose
size/reg property indicates swiotlb-size

○ Compatible = restricted-dma-pool

Private

Memory

Shared

Memory

VM

Madrid 2024

Memory Assignment

● All of VM’s memory need to be assigned before it begins execution

● Memory can be LENT or SHARED

○ LENT memory is made private to guest

○ SHARED memory is made shared between guest and host

● No API (at this time) for guest to share part of its private memory with host

○ Any shared memory required needs to be assigned to guest before it starts

○ Guest needs to be told where in its address space shared memory can be found

● Non-confidential guests : All memory is SHARED

● Confidential guests :

○ (ram_size – swiotlb_size) is LENT

○ swiotlb_size is SHARED

Madrid 2024

Scheduling VCPUs

● Gunyah hypervisor supports both proxy and native (vcpu) scheduler

● Gunyah accelerator of Qemu currently supports only proxy scheduled VMs

○ Supporting hypervisor-scheduled VMs is a matter of adding additional DT nodes and VCPU related
ioctls.

○ May be supported in future

● Proxy scheduling = Donate thread’s time to a VCPU of VM

○ VCPU_RUN ioctl -> GH_HYPERCALL_VCPU_RUN hypercall

○ Return value could indicate:

■ MMIO access (device emulation in Qemu)

■ VM exit

Madrid 2024

Gunyah Hypervisor

Virtual GIC

VM
Gunyah

Driver

QEMU
eventfd

Doorbell
IRQ10 IRQ11 IRQ_N

Interrupt Controller

Madrid 2024

Doorbell

● Virtual devices that can be associated with an interrupt

● doorbell_send hypercall API can be used by host VM to request injection of associated

interrupt

● Doorbell created and bound to an interrupt via DT:

● An eventfd can be bound to a doorbell.

● Injecting an interrupt is a matter of writing to associated eventfd

gunyah-vm-config {

vdevices {

dbl-1 {

vdevice-type = "doorbell";

generate = "/hypervisor/dbl-1";

qcom,label = <0x01>;

peer-default;

source-can-clear;

interrupts = <0x00 0x01 0x04>;

}

struct gh_fn_irqfd_arg ghirqfd;

fdesc.type = GH_FN_IRQFD;

fdesc.arg_size = sizeof(struct gh_fn_irqfd_arg);

fdesc.arg = (__u64)(&ghirqfd);

ghirqfd.label = X; // label (X) represents interrupt number

ghirqfd.fd = irqfd; // @irqfd eventfd is bound to interrupt X

ghirqfd.flags = GH_IRQFD_FLAGS_LEVEL;

ret = gunyah_vm_ioctl(GH_VM_ADD_FUNCTION, &fdesc);

Madrid 2024

Interrupt Controller

● Gunyah hypervisor emulates GICv3 for VMs

● ITS not supported

● Key attributes of GICv3 (like the address for redistributor/distributor registers) conveyed via

DT, which is interpreted by RM before VM starts

● Each SPI is associated with a doorbell and eventfd.

● Each eventfd registered with Linux driver for a specific doorbell

● Qemu can inject a specific interrupt by writing to the associated eventfd

Madrid 2024

Future Work

● Consolidate confidential VM changes with KVM

● Tracing

● Updates based on kernel UAPI changes before seeking merge

● Device Assignment

● Continuous Integration Tests enabled for Gunyah

Questions ? quic_svaddagi@quicinc.com

Thank you

Madrid 2024

Device Assignment

● Exploring VFIO framework

● Some challenges for secure device assignment:

○ Device Attestation

○ Device and related resources are all assigned as unit

○ Handling IOMMU topology changes at runtime

○ Device sanitization after VM crash

○ Multi-VM assignment

Madrid 2024

Gunyah Support in Qemu

● CMDLine changes

● Scheduler

● Memory Management

● Interrupt Controller

● Device Tree related

● Starting VM (Boot CPU Registers)

● Run Loop

● Virtio Devices

● Generic changes introduced in arm machine

○ Confidential guest support

■ Swiotlb

■ Memory reservation (dma pool)

■ MMIO windows

○ DTB modify

	Slide 1: Gunyah Accelerator for Qemu
	Slide 2: Agenda
	Slide 3: What is GunyahTM Hypervisor Software ?
	Slide 4: Gunyah Key Features
	Slide 5: Gunyah Key Features
	Slide 6: Gunyah – Key features (contd ..)
	Slide 7: Linux Gunyah Driver
	Slide 8: Gunyah Accelerator for Qemu
	Slide 9: Confidential Guests
	Slide 10: Memory Assignment
	Slide 11: Scheduling VCPUs
	Slide 12: Interrupt Controller
	Slide 13: Doorbell
	Slide 14: Interrupt Controller
	Slide 15: Future Work
	Slide 16
	Slide 17: Device Assignment
	Slide 18: Gunyah Support in Qemu

