
Orko: where are we 
now?
Alex Bennée, Virtualisation and Emulation Tech 
Lead



Madrid 2024

Outline
● Project Orko review
● Multimedia Devices and VirtIO
● Hardware Challenges
● Demo overview



Project Orko



Madrid 2024

Project Orko Aims

“To provide safe and efficient VirtIO devices for hypervisor 
agnostic cloud native workloads”

- Me, just now



Madrid 2024

VirtIO (@ OASIS)
● Para-virtualised hypervisor aware devices
● Minimise expensive guest exits

http://docs.oasis-open.org/virtio/virtio/v1.3/virtio-v1.3.html


Madrid 2024

Hypervisor Agnostic
● Originally a Linux/KVM creation
● Backends often tied to host/hypervisor

○ e.g. vhost-kernel tied to guts of Linux
● Orko leverages vhost-user

○ Backends in host userspace
○ Usable by multiple VMMs (QEMU, crosvm, standalone)
○ Hypervisor differences abstracted by libraries
○ Demonstrated on Xen



Madrid 2024

Cloud Native
● Develop and test in the Cloud, deploy on the Edge
● Strong Abstractions Needed

Source: soafee.io

https://architecture.docs.soafee.io/en/latest/contents/architecture.html


Madrid 2024

Safe and Efficient
● Original VirtIO design

○ Untrusted guests, potential for memory safety errors
○ Trusted device backend (“sees all”)

● Orko backends
○ Implemented in rust under rust-vmm project
○ Stricter memory model (“host sees what it needs”)



Madrid 2024

rust-vmm and vhost-device
● Created in December 2018

○ Leverages work from CrosVM and Firecracker
■ Amazon, Google, Intel, Red Hat and others

○ Components for building VMMs
■ vmm-reference
■ Cloud Hypervisor

● vhost-device, vhost-user backends
○ Production: gpio, i2c, input, rng, scmi, scsi, sound, vsock
○ Staging: video (awaiting standardisation)
○ PRs: console, can, spi
○ Maintainers from Linaro and Red Hat

https://github.com/rust-vmm
https://github.com/rust-vmm/vhost-device


Madrid 2024

Orko Architecture



Media Devices in VirtIO



Madrid 2024

Media Challenges
● Higher throughput

○ Mp3: 128-320 kbps
○ Raw Wav: 1,411 kpbs
○ Compressed Video: 1.5 to 68 Mbps
○ GPU: up to 40Gbps

● Tighter Latency Requirements
○ IRQ latency gets in way
○ Zero-copy sought after



Madrid 2024

virtio-sound getting ahead of itself

Adding clarity to the spec: 

“The device MUST NOT access or modify 
buffers on a virtqueue after it has
notified the driver about their availability.”

https://lists.oasis-open.org/archives/virtio-comment/202402/msg00052.html


Madrid 2024

Shared Memory
● pre-allocated and shared

○ From host or guest domain
○ May have backend requirements
○ Still need to coordinate between domains



Madrid 2024

Stage 2 Tables
● Type-1 hypervisors manage stage 2 directly

○ Complex rules for merging and propagating attributes

Source: Learn the Architecture - AArch64 memory model, Arm

https://developer.arm.com/documentation/102376/0100/Combining-Stage-1-and-Stage-2-attributes


Tales of woe
I mean “engineering opportunities”



Madrid 2024

PCI Implementations
● Errata on multiple-writes to PCI address space

○ Card memory treated as device memory
■ Different from x86 memory semantics

○ Workarounds in kernel
■ Same needed in the guest kernel

○ Implement quirk workarounds in Guest kernel



Madrid 2024

Bleeding Edge Software Stack
● A lot of tip-of-tree

○ Mesa (v24 for virtio-gpu Venus)
○ QEMU (8.2+)
○ Kernel (5.16+)
○ CrosVM gfxstream

● Multiple virtio-gpu approaches
○ Virglrenderer
○ Rutabaga with Wayland passthrough and SMO support
○ Venus/Vulkan with SMO support
○ Native Context



The Orko Demo
What’s on the Demo Friday Desk



Madrid 2024

Original plan



Madrid 2024

Current State



Madrid 2024

Split Driver Domain



Questions?



Thank you


