
Abstracting platform resources
using power & performance
domains over SCMI
Nikunj Kela
Engineer, Senior Staff
Qualcomm Innovation Center, Inc.

Madrid 2024

Agenda
● Motivation

● Achieving abstraction using SCMI

● Our architecture overview

● Status and plan

Madrid 2024

Resources, a typical peripheral driver interface with

Peripheral
Device
Driver

clk

gpio/
pincrtl

regulator

phy

power
domain

reset

mem
bandwidth

reset

clk

power
domain

Madrid 2024

What are the problems?
● The Linux drivers become too complex

○ Need to interface with clock, regulator, interconnect, GPIO/Pin-control, PHY etc.
frameworks

● Too many platform drivers needed for a single peripheral to work

○ Significant development efforts

○ Significant bring up efforts

○ Significant upstreaming efforts

○ Difficult to maintain so many drivers

Madrid 2024

SCMI(System Control and Management Interface)
● A set of operating system-independent

software interface that are used in system
management

● SCMI is split into two layers

○ Protocols
■ The services you want to provide

■ e.g., clock, voltage, power-domain,
reset, performance etc.

○ Transports
■ The mechanism by which the

parameters/results are communicated
between the caller of the interface(an
Agent) and the implementer (the
platform)

■ e.g. mailbox, smc/hvc call, virtio etc.
source: LinaroConnect 2016

Madrid 2024

SCMI to achieve abstraction

Peripheral
Device
Driver

clk

gpio/
pincrtl

regulator

phy

power
domain

reset

mem
bw

reset

clk

power
domain

clk-scmi.c

pinctrl-scmi.c

scmi-regulator.c

reset-scmi.c

scmi_pm_domain.c

scmi_pm_domain.c

reset-scmi.c

clk-scmi.c

Madrid 2024

Can we do better?

Peripheral
Device
Driver

clk

gpio/
pincrtl

regulator

phy

power
domain

reset

mem
bw

reset

clk

power
domain

Peripheral
Device
Driver

power
domain

reset

perf
domain

Madrid 2024

Our approach
● Define logical/modelled power and

performance domains

● Peripheral drivers can now request
Firmware to configure device
Performance Level thus avoiding
multiple requests for individual
resources

● Use SCMI power and performance
protocols to achieve

○ Better abstraction (Interconnect
Bandwidth and PHY can also be
abstracted)

○ Reduce # of requests to Firmware

clock ‘c’@f1

icc ‘i’@b1

vreg ‘v’@m1

Level-L1

clock ‘c’@f2

icc ‘i’@b1

vreg ‘v’@m1

Level-L2

SCMI perf
domain0

Madrid 2024

Continue…(Modelled performance domains)
● In Linux, the performance domains have been used for

compute(CPU) devices only so far

● We extend its usage to peripheral devices

● Define performance domains to perform

○ Dynamic clocks voting i.e. set_rate operations

○ Dynamic interconnect bandwidth voting

○ Dynamic changes to PHY modes

○ Dynamic changes to baud rates in case of UART

● Define performance levels for the peripherals

○ For baud-rates in UART, perf levels can be defined as

■ LEVEL_9600, LEVEL_115200, etc.

○ What these levels translate to is hidden in the Firmware

source: wikimedia commons
license: CC BY-SA 2.0 Deed | Attribution-ShareAlike 2.0 Generic | Creative Commons
no changes were made

Madrid 2024

Continue…(Modelled power domains)

clock ‘c’ enable

vreg ‘v’ on
power-on

power dom ‘d’ on

phy ‘p’ init/on

clock ‘c’ disable

vreg ‘v’ off
power-off

power dom ‘d’ off

phy ‘p’ deinit/off

SCMI power
domain0

source: wikimedia commons
license: CC BY-SA 2.0 Deed | Attribution-ShareAlike 2.0 Generic | Creative Commons
no changes were made

Madrid 2024

Code Flow on Linux
Peripheral Device Driver

OPP Framework
Runtime PM
Framework

scmi_perf_domain.c scmi_pm_domain.c drivers/pmdomain/arm/

perf.c power.c drivers/firmware/arm_scmi

protocols.h

transport(smc.c, mailbox.c etc.)

Madrid 2024

Changes pushed in Linux Kernel
● SCMI performance driver is available to work with peripheral devices by extending genpd

framework [1]

● OPP framework is extended to work with SCMI performance driver [2]

● Helper APIs are now available so the consumer drivers can avoid the manual attach/detach
in case of multiple power-domains [3]

[1]: https://lore.kernel.org/all/20230825112633.236607-1-ulf.hansson@linaro.org/
[2]: https://lore.kernel.org/all/20230925131715.138411-1-ulf.hansson@linaro.org/
[3]: https://lore.kernel.org/all/20240130123951.236243-1-ulf.hansson@linaro.org/

Madrid 2024

Our Architecture – Firmware Managed Resources

shmem-pcie

shmem-ufs

Hypervisor(Gunyah)

ufs pcie

scmi-ufs-inst scmi-pcie-inst

Linux VMFirmware VM

ufsclk pciephy

irq hvcirq

SCMI
Server

Device
Driver

hvc

ab

cd

ef

g h

i j

k l

• Dedicated SCMI
channels (shmem +
doorbells) for each
peripheral device

• FW VM has multiple
vCPUs; the requests
can be served in
parallel

SA8775p SoC

Madrid 2024

How to figure fw-managed setup in drivers
● Since we are using power and perf protocol(and not clocks, voltage etc.), peripheral

drivers need to know if running in a fw-managed setup or locally managed setup

1. Check on the presence/absence of the clocks(and/or other resources) in DT

○ Pros: don’t need anything additional

○ Cons: may work for some driver; clock maybe optional on some platforms; may not scale;
insufficient condition to ascertain fw-managed setup

2. Use a new compatible for each device(e.g. “qcom,ufshc-fw-managed”)

○ Pros: cleaner and explicit way to determine fw-managed setup

○ Cons: HW IP is not changed so may not be warranted;

3. Use vendor DT property for devices (e.g. “qcom,firmware-managed-resources”)

○ Pros: cleaner and explicit way to determine fw-managed setup

○ Cons: repetition of the same property in device tree nodes; vendor specific so 3rd party
drivers may not accept it

Madrid 2024

Continue…
4. Use a vendor agnostic DT property for devices (e.g. “firmware-managed-resources”)

○ Pros: cleaner and explicit way to determine fw-managed setup

○ Cons: repetition of the same property in device tree nodes; different vendors may abstract
differently

5. Use a board(platform)level compatible

○ Pros: common way to all devices

○ Cons: each driver will need to match for board(platform) level DT; might not scale

● Upstream discussion(not concluded) on this can be found [4]

● We will conform to upstream suggestions once the discussion concludes

[4]: https://lore.kernel.org/all/be31801e-bb21-426b-f7aa-2b52727de646@quicinc.com/

Madrid 2024

Status and plan
● Firmware VM side development is 90% complete

● Most of the Linux peripheral device driver changes are under internal review

● SCMI transport driver changes for Qualcomm hypervisor is available in upstream [5]

● We plan to send peripheral driver changes in upstream soon

[5]: https://lore.kernel.org/all/20231009191437.27926-1-quic_nkela@quicinc.com/

Thank you

MAD24-310

