
DENSO’s Approach
for Mixed Critical
Systems in SDV
Motohiro Shibakawa
DENSO AUTOMOTIVE Deutschland GmbH

Madrid 2024

Agenda
● What is Software Defined Vehicle(SDV)?

○ Software Defined Vehicle(SDV)

○ Mixed Criticality System

○ Technical Challenges

● SDV technical areas and open community

○ Technical areas required for SDV

○ SOAFEE

● DENSO’s Approach for Mixed Critical Systems

○ Overview of DENSO’s Approach

○ Proposal for Mixed Criticality (MC)

○ Enabling Tech Candidate: Lingua Franca

○ Brief Overview of LinguaFranca

○ Demo video

○ Automated Valet Parking: Problems and Approach

○ Integration with systems engineering

● Conclusion

What is
Software Defined Vehicle(SDV)?

Madrid 2024

SDV (Software Defined Vehicle)
● SDV stands for Software Defined Vehicle, which means "a car defined by software.".

● In the past, cars improved their performance by improving the hardware centered around the combustion engines, but in

the future, the software in the car will determine the value of the car.

The development/production of vehicle has shifted from hardware centric to software centric

SDV Software Platform (Virtual ePF)

SDV App SDV App SDV App

ePF-A ePF-B ePF-C

Concept structure of SDV
● The concept and mechanism of abstracting vehicle hardware

○ ECUs, in-vehicle networks, sensors, and actuators with
virtualization technology

● Software controlling these vehicle resources

● In other words, "How to separate apps, platform, and hardware"

Madrid 2024

Mixed Criticality System
System Integrating components with different levels of safety criticality

Mixed Criticality will be a fundamental requirement for SDV

● Evolution of the ECU architecture makes it likely that applications

will interfere with each other

(Isolated ECU -> Domain ECU -> Zonal ECU)

● Hardware abstraction brings a unified design, and verification

approach and platform for various applications

● New functions are expected from cross-network applications, such

as working with the cloud, V2V, V2X, etc

Safety applications

Middleware

Real-time OS

Hypervisor

Hardware

QM applications

Middleware

Linux Android

Hypervisor

Hardware

Shared
Network

Apps interacting and working as one system

SDV Software Platform (ePF)

ADAS App IVI App

Madrid 2024

Technical challenges of SDV
● Handling of MC system runtime behavior (due to execution times, network latency, etc.) on various hardware

● Mixed critical app orchestration with consideration of time-critical event

● Satisfy non-functional requirements (Repeatability, testability, reliability, etc.)

• Network effects:
• Congestion
• Routing
• Buffer overflows…

• Operating system effects:
• Scheduling
• Sporadic tasks
• Dependencies
• Mutexes

• Processor effects:
• Pipeline hazards
• Caches
• Interrupts…

Guaranteeing SDV system deterministic behavior is crucial

There is many uncertainties in the SDV

SDV technical areas
and open community

Madrid 2024

Technical areas required for SDV
● Wide-ranged SDV technical area cannot be solved by one company alone

● Consortiums to develop common standards and technology

● Accelerate SDV development through active participation in open consortia

Need for Standardization

Areas where
DENSO could

contribute

Madrid 2024

SOAFEE
● Scalable Open Architecture For Embedded Edge project

● Established in September 2021 led by Arm

Governing Body Members: 9 companies

Voting Members: 108 companies

(as of September 2023)

Scope & Purpose of Activity

• Define a software architecture and reference

implementation for deployment of mixed critical

system

• A platform for seamless cloud-to-automotive edge

software development, designed to maximize

environmental parity.

• The creation and contribution to industry standards

that support cloud-native development-

Madrid 2024

Challenges SOAFEE is working on

Source: https://www.soafee.io/files/soafee-seminar-open-and-arm-presentation.pdf

Aiming to develop a Mixed Criticality Aware Orchestrator

DENSO’s Approach
for Mixed Critical Systems

Madrid 2024

Overview of DENSO’s Approach
1. Systems Engineering: Modeling safety criteria of each component using timing abstractions

2. Mixed Critical Orchestrator: Runtime enforcement of timing requirement through system modeling

1. Real-time application monitoring to detection of deadline violations of distributed workload execution

3. Cloud Native Development: Life cycle management of application on virtual hardware

• Functional validation, provisioning of cloud resources and deployment

Timing

Requirements

Systems Engineering

System

Structure
Providing requirements

Mixed Critical Orchestrator

Cloud Native Development

Deploy
Execution and monitoring

Madrid 2024

Mixed Critical Orchestrator
SOAFEE’s Mixed Criticality aware orchestrator

● Hardware abstractions for criticality agnostic application

● Integration of IT industry orchestration tools into the

automotive edge

DENSO’s Mixed Criticality solution

● Provides an application-level safety envelope for handling

uncertainties

● Deterministic scheduling methods for handling real-time

requirements of the application

● Safety violations detected at runtime and compile time

Hypervisor Hypervisor

HW HW

Shared

Network

QM applicationsSafety applications

… …

Linux Android

Middleware

Real-time OS

Middleware

Mixed Critical App

SOAFEE’s Mixed Criticality Orchestrator

DENSO Mixed Criticality Solution

The combination of these two technologies is key to the realization of Mixed Critical Orchestrator

Proposed Mixed
Criticality Runtime

Madrid 2024

Enabling technology: Lingua Franca
Lingua Franca is modeling language and runtime to enrich programing

language with ability to specify timed behavior

Open Source Project developed by UC Berkeley
• https://www.lf-lang.org/

• https://github.com/lf-lang/lingua-franca

Main Features:

• Modeling language for concurrent system that ensure
determinism, eliminating concerns about thread management,
synchronization.

• The scheduler automatically generated from the model
accurately handles time-sensitive tasks without the complex
timing logic typically required in concurrent programming.

LF integrates complex systems with reliability, repeatability, and testability

Collaborator:
Prof. Edward Lee

Denso and UCB have collaborated since 2015

https://www.lf-lang.org/
https://github.com/lf-lang/lingua-franca

Madrid 2024

Brief overview of Lingua Franca
• Reactor represents a functional component that is time encoded

• Deterministic scheduler provides a runtime that enables deterministic concurrency

Factoring in
WCET of this

workload

Deadline handler invoked
if expected event not

triggered within 100 msec

Lingua Franca allow us to model and execute deterministic application

Lingua Franca

Compiler

Generated code

LF Deterministic Scheduler

Target Platform

reactor Sensor_ASILB{
timer t(0, 100 msec);
output x:int;
state count:int=0;
reaction(t) -> x {=

lf_set(x, self->count);
self->count++;

=}
}

Top-level reactor

(diagram view)

Timestamped message

Application logic is written in
the supported languages :

C/CPP/Python/TS/Rust

Periodic trigger

Single reactor

(code view)

The deterministic scheduler determines
the logical time to trigger reactor

and monitors for violations of timing.

Madrid 2024

Demo video

Madrid 2024

AVP Application

Automated Valet Parking: Problems and Approach
Automated Valet Parking

• AD application to autonomously park and return to a pick-

up/drop-off area in a parking lot

• Autoware Foundation provides blueprint to show how such a

service can be integrated with SOAFEE SDV reference architecture

Problem

• AVP application occasionally exhibits non-deterministic behavior

(Eg: Order of arrival of messages and execution of nodes)

→ This problem highlights the importance of deterministically

scheduling

Approach

• Porting the AVP to Lingua Franca - basically wrapping it up as a

reactor. It can guarantee that AVP will run reliably, exactly as we

design it.

17

LF system modeling of AVP application

Proposing Lingua Franca for SOAFEE AVP Blueprint to achieve deterministic behavior

Madrid 2024

System Model

Integration with systems engineering

Lingua Franca

Model

Timing Constraint

Requirement Model

Requirement

Constraints
Non-

Functional

Requirement

Functional

Requirement

System

StructureBehavior

Requirement

Definition

System/Control

Design

Use Lingua Franca to refine time requirements in the early design phase (Shift-left)

logic

● Systems Engineering is widely used for designing and

testing complex systems in aerospace, military, and

automotive industries.

● Lingua Franca, a part of Systems Engineering,

focuses on modeling time requirements

Our Idea

● Integrate Lingua Franca with requirements models,

structural models, and control logic to validate and

refine time requirements early in the design process

● This reduces the risk of discovering time issues later,

prevents rework, and improves system consistency

and optimization.

Madrid 2024

Conclusion

● The development of SDV technologies through open community activities is accelerating in the

automotive industry.

● Our SDV activity focuses on mixed critical system and system modeling

● Proposing Lingua Franca as an essential solution for realizing “mixed critical orchestrator” in

SOAFEE

● Integration of Systems Engineering and LF is planned for the purpose of shift-left

Thank you

	Slide 1: DENSO’s Approach for Mixed Critical Systems in SDV
	Slide 2: Agenda
	Slide 3: What is Software Defined Vehicle(SDV)?
	Slide 4: SDV (Software Defined Vehicle)
	Slide 5: Mixed Criticality System
	Slide 6: Technical challenges of SDV
	Slide 7: SDV technical areas and open community
	Slide 8: Technical areas required for SDV
	Slide 9: SOAFEE
	Slide 10: Challenges SOAFEE is working on
	Slide 11: DENSO’s Approach for Mixed Critical Systems
	Slide 12: Overview of DENSO’s Approach
	Slide 13: Mixed Critical Orchestrator
	Slide 14: Enabling technology: Lingua Franca
	Slide 15: Brief overview of Lingua Franca
	Slide 16: Demo video
	Slide 17: Automated Valet Parking: Problems and Approach
	Slide 18: Integration with systems engineering
	Slide 19: Conclusion
	Slide 20

