
Why TLBI matters on ARM server:
scalability issues we found and solutions

Hanjun Guo <guohanjun@huawei.com>
Xiang Chen <chenxiang66@hisilicon.com>

Madrid 2024

What is TLBI?

➢ TLB

✓ Translation Lookaside Buffer.

✓ It’s a cache (translation cache), caching the mappings
of VA to PA, critical for the performance.

➢ TLBI

✓ TLB is cache, but without full coherent, so any update
to the shared page table, software needs to “maintain
the coherence”, which is TLB invalidation.

✓ Anything related to page table attribute and mapping
update, a TLBI will be needed.

✓ Usecases such as VM live migration, Tired memory，
ARM contiguous bit and more...

Madrid 2024

TLBI broadcasting
Every TLB invalidation operation uses the following template:

From arm ARM，it said that TLBI will broadcast to IS（Inner shareable）or OS（Outer shareable），
inner shareable and out sharable are IMPLEMENTATION DEFINED, but usually IS or OS will include all

the CPUs in the system.

For the typical inner shareable system:

✓ TLBI will broadcast to all the CPUs

✓ DSB ISH just wait TLBI to be retired

DSB ISHST // Ensure prior page-table updates have completed
TLBI ... // Invalidate the TLB
DSB ISH // Ensure the TLB invalidation has completed

Madrid 2024

TLBI is time consuming on multi-core system
Why?

Because as defined by the AMBA CHI spec, only one DVM(Distributed Virtual Memory) Sync can be

executed at one time on the CHI bus, with CPU number increased, the waiting list of DVM Sync on

MN(Misc Node) will be increased, leading to the delays.

And NUMA, latency is added for multi CPU Die and sockets, which adding more time consuming.

For virtual machine use cases, HCR_EL2.FB is set in default, DVM request from guest OS will

broadcast to the whole inner sharable domain.

All of this will introduce scalability issues on a multi-core system, especially on ARM servers(lots of

them are around 100 cores).

Madrid 2024

TLBI scalability issues running VMs (1)
Virtual machines will only run on some specific CPUs in the system, even the CPU is shared by

multi VMs, but whenever shared translation tables are modified, TLBI will send to all the CPUs in

the system.

Madrid 2024

TLBI scalability issues running VMs (2)
On a 96 cores ARM server, bootup 1/2/8/16/24

VMs，each VM with 4 CPU cores, running

unixbench in the VM to test the performance,

which is:

✓ Round 1, bootup only one VM with 4 CPU

cores on a 96 core system, running unixbench;

✓ Round 2, bootup two VMs, each VM with 4

CPU cores, running unixbench;

✓ …

✓ Round 5, bootup 24 VMs…

It doesn’t scale well from 1 to 24 VMs, TLBI

broadcast is like neighbor noise.

*The data of unixbench scores is normalized to (0,1)

1
0.98152032

9
0.82073421

3 0.68598007
7

0.61864322

0

0.2

0.4

0.6

0.8

1

1.2

1 2 8 16 24

u
n
ix

b
e
n
c
h
 s

c
o
re

Num of VMs

Scalability test result

Madrid 2024

Previous work for mitigating the TLBI overhead

Reduce TLBI times (accepted by mainline)

1. Avoid synchronous TLB invalidation for

intermediate page-table entries on

arm64, by Will Deacon [here]

2. TLBI by range for ARMv8.4，by Zhenyu

Ye [here]

3. TLBI by range for KVM, by Raghavendra

[here]

4. Batched/deferred tlb shootdown, by

Yicong Yang, Barry Song and Anshuman

Khandual [here]

Limit TLBI broadcast scope (not accepted)

1. IPI based TLB invalidation, by Matthias

Brugger 8 years ago [here]

Still don’t have a good way to limit the TLBI broadcast scope.

https://lore.kernel.org/linux-arm-kernel/20180831095417.GF13166@arm.com/T/
https://patchwork.kernel.org/project/linux-arm-kernel/patch/20200715071945.897-2-yezhenyu2@huawei.com/
https://lwn.net/ml/linux-kernel/20230414172922.812640-1-rananta@google.com/
https://lore.kernel.org/lkml/20221028081255.19157-1-yangyicong@huawei.com/T/#m4aa257f021ae467e00dc91d6d06f2e47be457fdc
https://patchwork.kernel.org/project/linux-arm-kernel/patch/1470302117-32296-3-git-send-email-mbrugger@suse.com/

Madrid 2024

TLBI by Affinity: Software-Hardware co-design for TLBI
overhead optimization

VM0

cpu0 cpu1 cpu3cpu2

VM1

cpu4 cpu5 cpu7cpu6

TLBI

VM0

cpu0 cpu1 cpu3cpu2

VM1

cpu4 cpu5 cpu7cpu6

KVM TLBI broadcast

TLBI

configure

NOW TO BE

Allows TLBI executed at EL1 to be broadcast in a configurable range of physical CPUs (even with HCR_EL2.FB set)

Madrid 2024

TLBI by Affinity: how it works for the hardware

1. For the CPU running VM, introduce a per CPU core register, to record the TLBI broadcast

affinity for which CPUs will run, the software update it accordingly.

2. Some microarchitecture level updates, such as DVM broadcast.

Madrid 2024

TLBI by Affinity: how it works for the software

1. KVM needs to record and update the physical CPU bitmap of the running VM in real time;

2. Before each vcpu is loaded, we re-calculate the VM-wide sched_cpus, and if it's changed

we will kick all other vcpus out to reload the latest TLBI affinity to the register, otherwise

keep it unchanged.

Madrid 2024

TLBI by Affinity: Performance data

1 2 8 16 24

Before 1 0.981520329 0.820734213 0.685980077 0.61864322

After 1 0.986414794 0.959610862 0.956697157 0.952155555

0

0.2

0.4

0.6

0.8

1

1.2

N
o
rm

a
li
z
e
d
 u

n
ib

e
n
c
h

s
c
o
re

Number of VMs

scalability comparation on two machines(96 cores)

Before After

Do the same test on two machines

with 96 cores (bootup 1/2/8/16/24

VMs running unixbench), with the

TLBI by affinity:

1. Scale well from 1 to 24 VMs.

2. More performance gain with CPU

core added.

3. Compared to TLBI without

optimization, we got 50%

performance boost for 24 VMs.

50%

Madrid 2024

TODO

➢ Extend the TLBI by affinity to per process/thread granularity.

➢ “Upstream” to the ARM spec, then upstream to the mainline kernel.

Thank you

