
A GDB to support debugging High
Performance Computing (HPC)
Applications: Upstreaming

Richard Bunt, Principal Engineer, Linaro
Forge GDB Technical Lead

Madrid 2024

Agenda
● Inspired by a talk at Connect ‘23 around the benefits of upstreaming
● Similar story for Forge’s High Performance Computing (HPC) extensions to GDB
● Background

○ High Performance Computing
○ Linaro DDT - A Graphical debugger for HPC

● GDB with HPC extensions
● Downstream Pain
● Relative Upstream Bliss

Madrid 2024

High Performance Computing (HPC)
● Parallel computing
● Examples:

○ Simulate galaxy creation, weather forecasting
○ Computational fluid dynamics or crash/impact simulations

● Commodity hardware (optimized) running Linux
● Languages {Fortran, C, C++, Python}
● Message Passing Interface (MPI)

○ Open MPI, MPICH, MVAPICH

LHR23-303-Introduction to Linaro Forge: Dirk Schubert

Madrid 2024

●

Linaro DDT

LHR23-303-Introduction to Linaro Forge: Dirk Schubert. Modified: Added Raw Command window

Madrid 2024

GDB(s) for HPC
● Fortran (prevalent language in HPC)
● Non-GNU compiler support
● Stability
● Memory efficiency
● Third-party GPU GDBs

Madrid 2024

Example: Limited length printing
(gdb) print -elements 10 bigArray
$1 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10…)

(gdb) set max-value-size 40
print -elements 10 bigArray
Value requires 40000 bytes, …

● HPC applications use large arrays
to model physical effects
multi-GB.

● GDB eagerly loads entire arrays
● Upstream status

Madrid 2024

Example: Fortran array slicing
!gdb/testsuite/gdb.fortran/array-slices.f90
$1 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
print *,array(2:4)
$1 = (2, 3, 4)
print *,array(:3)
$1 = (1, 2, 3)
print *,array(5:3:-1)
$1 = (5, 4, 3)
print *,array4d(3:-2:-2,10:7:-2,:,-7:-10:-1)
…

● Array slicing syntax
● Inspect a small subset of an array
● 3 implementations
● Forge

○ 7 dimension limit
○ Limited slicing support
○ Memory efficient

● Upstream
○ Limited slicing support

● Fedora
○ Full slicing support
○ Memory inefficiency

● Upstream status

Madrid 2024

Example: Disable source file opening
● Reading source files from 10K GDBs from a shared file system
● GDB reads source files by default
● A similar issue affects init files
● set source open [on|off]
● Forge handles file access using its scalable tree.

Madrid 2024

Example: Max depth
#define N 500
struct coordinate { int a; int b; int c; };
struct coordinates { int a[N]; int b[N]; int
c[N]; };

(gdb) print -max-depth 0 -elements 2 --
coordinates_i
$5 = {...}
(gdb) print -max-depth 1 -elements 2 --
coordinates_i
$6 = {a = {...}, b = {...}, c = {...}}
(gdb) print -max-depth 2 -elements 2 --
coordinates_i
$7 = {a = {0, 1...}, b = {0, 2...}, c = {0,
3...}}

● Control the amount of data
● SoA, AoS
● Combined with limited length
● Forge runs with a mix of 0 and 1
● Upstream status

Madrid 2024

The Debt
● Patches vs. Lines of Code (LOC)
● GDB 7.6.2

○ Never again!
● GDB 7.10.1

○ Abandoned
● Number of patches increasing
● GPU GDBs
● Not sustainable

Madrid 2024

Patch Paydown
● Change of tack: Upstreaming
● Around GDB 9.1 that we had

upstreamed enough
● Filtering

Madrid 2024

Now
● Further upstreaming
● Python plugins

Madrid 2024

Wins
● Everyone can benefit from the improvements

○ Previous examples
○ Support for isolating Python

● One Fortran array slicing implementation
● Reduced time to rebase from months to weeks

○ GDB 13
● Elided rebases altogether

○ System GPU GDBs
○ GDB 14

● Enabled customers earlier
○ Graviton 3 support case

Madrid 2024

Future
● Projecting GDB 15 to have even fewer patches

○ Upstreams
○ GDB plugins

● Continue upstreaming

Thank you
Any Questions?

