
Implementing an FF-A
Secure Partition
Manager in Rust
Bálint Dobszay & Imre Géza Kis
2024-05-16
Arm

Madrid 2024

Introduction
● Motivation

○ Learning Rust as a hobby vs. writing secure firmware as day job
○ How about firmware development in Rust?
○ The S-EL1 SPMC is a well-defined component by the FF-A specification
○ First goal: running Trusted Services Secure Partitions (SPs)

● Timeline
○ 2022-2023 – Development
○ 2023. Dec. – Published prototype on TrustedFirmware.org
○ Current state: gathering feedback

● Future maintenance TBD

https://git.trustedfirmware.org/rust-spmc/rust-spmc/

Madrid 2024

About Rust language
● The safety features of Rust makes it ideal for security critical environments
● Large portion of the vulnerabilities are caused by memory safety issues [1]
● Compile time checks, no garbage collector, performance similar to C [2]
● Cargo: standard build system & package manager
● LLVM based compiler (AArch64 has tier 1 support)
● Many major companies started to adopt Rust for new projects

https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://programming-language-benchmarks.vercel.app/rust-vs-c

Madrid 2024

Firmware Framework for Arm A-profile (FF-A)
● Defines the software architecture

of firmware components
● Standardized

communication protocol
○ Register ABI
○ Memory sharing primitives
○ Component discovery

● Offers isolation of components
using Arm architectural features

● Secure Partition Manager (SPM)
○ Isolation of the Secure Partitions
○ Communication between

Secure Partitions and Normal World
components

Madrid 2024

SPMC structure (boot)
● Minimal low level startup code
● Loading Secure Partitions

○ Configuring based on their manifest
● Isolation: Configure virtual memory

mapping
● Communication: Parse and forward

FF-A messages
● Platform abstraction layer

○ UART driver, interrupt controller driver
● Multi-core operation

○ Run multiple SPs on different cores
○ Thread safety

Madrid 2024

SPMC structure
● Minimal low level startup code
● Loading Secure Partitions

○ Configuring based on their manifest
● Isolation: Configure virtual memory

mapping
● Communication: Parse and forward

FF-A messages
● Platform abstraction layer

○ UART driver, interrupt controller driver
● Multi-core operation

○ Run multiple SPs on different cores
○ Thread safety

Madrid 2024

SPMC example integration
● End-to-end testing
● Arm FVP Base RevC platform
● Trusted Firmware-A

○ Implements the SPMD component
● Trusted Services S-EL0 SPs

○ PSA services reference
implementation

● Normal world components
○ Linux (FF-A driver, TS-TEE driver)
○ Test applications from Trusted

Services (includes PSA ACS)

Madrid 2024

Conclusion (pros)
● Mandatory boundary/null checks
● Lifetime and ownership
● Efficient built-in collections
● Traits, structured code, compile

time resolving
● Thread safe secondary core init
● Integrating assembly code is easy
● Cargo build system

let mut resource: Option<Resource> = None;

// This would cause a panic:
// called `Option::unwrap()` on a `None` value
// resource.unwrap().action();

resource = Some(Resource::new(5));

if let Some(res) = &resource {
res.action();

}

resource.unwrap().action();

Madrid 2024

Conclusion (pros)
● Mandatory boundary/null checks
● Lifetime and ownership
● Efficient built-in collections
● Traits, structured code, compile

time resolving
● Thread safe secondary core init
● Integrating assembly code is easy
● Cargo build system

impl<'a> MappedBuffer<'a> {
pub fn new(addr: usize, len: usize) -> Self {
memory_map(addr, len);
Self { buffer: [...] }

}
pub fn get_buffer(&self) -> &[u8] {

self.buffer
}

}

impl<'a> Drop for MappedBuffer<'a> {
fn drop(&mut self) { memory_unmap([...]); }

}

fn example() {
let buffer: &[u8];
{

let mapped_buffer = MappedBuffer::new([...]);
buffer = mapped_buffer.get_buffer();
// mapped_buffer is dropped here

}
println!("Buffer value: {:?}", buffer);

// error[E0597]: `mapped_buffer` does not live long enough
}

Madrid 2024

Conclusion (pros)
● Mandatory boundary/null checks
● Lifetime and ownership
● Efficient built-in collections
● Traits, structured code, compile

time resolving
● Thread safe secondary core init
● Integrating assembly code is easy
● Cargo build system

● Collections
○ Sequences: Vec, VecDeque, LinkedList
○ Maps: BTreeMap
○ Sets: BTreeSet
○ Misc: BinaryHeap

● Iterators
○ Finding, filtering items

● Available for no_std

Madrid 2024

Conclusion (pros)
● Mandatory boundary/null checks
● Lifetime and ownership
● Efficient built-in collections
● Traits, structured code, compile

time resolving
● Thread safe secondary core init
● Integrating assembly code is easy
● Cargo build system

● Implementing interfaces
● Type safety

pub trait PlatformInterface {
type Context: ContextInterface;
type NormalWorld: NormalWorldInterface;
const CORE_COUNT: usize;

fn init_log();
fn init_heap();
fn create_page_pool() -> PagePool;
fn create_kernel_space(page_pool: PagePool) ->
KernelSpace;
fn init_interrupts();
fn init_core_interrupts();
fn get_current_el() -> ExceptionLevel;

}

Madrid 2024

Conclusion (pros)
● Mandatory boundary/null checks
● Lifetime and ownership
● Efficient built-in collections
● Traits, structured code, compile

time resolving
● Thread safe secondary core init
● Integrating assembly code is easy
● Cargo build system

● Built-in Send and Sync trait
● The compiler prevents sending or sharing non-

thread-safe objects between threads
○ Example: wrapping object into Mutex makes it

safe

let spmc = Arc::new(Spmc::new([...]).unwrap());
spmc.init().unwrap();

for i in 1..Platform::CORE_COUNT {
let local_spmc = spmc.clone();
let local_kernel_space = kernel_space.clone();
set_sec_core_entry(i, move |core_index: usize| {

local_kernel_space.activate();
Platform::init_core_interrupts();
local_spmc.main_loop();

})
}

spmc.main_loop();

Madrid 2024

Conclusion (pros)
● Mandatory boundary/null checks
● Lifetime and ownership
● Efficient built-in collections
● Traits, structured code, compile

time resolving
● Thread safe secondary core init
● Integrating assembly code is easy
● Cargo build system

● No need for manual assembler
configuration

core::arch::global_asm!(include_str!("startup.S"));
core::arch::asm!(

"msr ttbr0_el1, {0}
isb",
in(reg) ttbr_value)

Madrid 2024

Conclusion (pros)
● Mandatory boundary/null checks
● Lifetime and ownership
● Efficient built-in collections
● Traits, structured code, compile

time resolving
● Thread safe secondary core init
● Integrating assembly code is easy
● Cargo build system

● Standard but not mandatory
● Encourages code reuse
● Easy cross compilation

--target aarch64-unknown-none-softfloat

Madrid 2024

Conclusion (cons)
● Lifetimes vs hardware

○ Storing Rust allocated resources in
hardware defined structures

○ Requires manual lifetime handling
● Fight against the compiler

○ Propagating explicit object lifetime
● Heavy language syntax and

standard features

Source: unknown (probably Reddit?)

Madrid 2024

Unsafe
● Disable some of the compiler checks
● Contained and minimalized
● Makes review effort more focused
● General advice

○ Do not use
○ Use existing crate which wraps the required feature in a safe way

● In firmware it’s inevitable

Madrid 2024

Unsafe

92%

2%
6%

Lines of code (~5200)

Rust
Unsafe Rust
Assembly

20%

28%

3%

25%

13%

11%

Purpose of unsafe code lines
(~100)

Raw pointer
dereference
Peripheral access

Mutable global
variable access
Inline assembly

Calling assembly
functions
Manual lifetime
handling

Madrid 2024

Summary
● Experimental proof-of-concept project

○ FF-A feature parity for S-EL1 SPMC
○ Running S-EL0 Secure Partitions

● Rust has many benefits
● Future plans

○ Hardening, testing
○ Implement full FF-A feature set
○ Investigate deployment to S-EL2

Madrid 2024

Resources
● rust-spmc git repository (code, documentation, build & test instructions)
● Arm Firmware Framework for Arm A-profile
● Rust language
● Trustedfirmware.org mailing list
● Trustedfirmware.org Discord

https://git.trustedfirmware.org/rust-spmc/rust-spmc
https://developer.arm.com/documentation/den0077/latest
https://www.rust-lang.org/
https://lists.trustedfirmware.org/mailman3/lists/tf-a.lists.trustedfirmware.org/
https://www.trustedfirmware.org/faq/

Thank you

