
Static Analysis and
You!
(Smatch mostly)

Madrid 2024

The kernel is a heavy user of static analysis

● 2-4% of patches come from static analysis
● A similar percent of static analysis patches were backported to stable kernels

since 2016
● Saves developer time
● Prevents issues for customers

Madrid 2024

Tools

● GCC / Clang W=1
● Checkpatch
● Coverity
● Cpp Check
● Sparse
● Coccinelle
● Smatch

Madrid 2024

Sparse
● Good for tagging data and flagging misuse of data

● Endian data
● User space pointers
● IO Mem pointers

● Smatch uses it as a C front end

Madrid 2024

Coccinelle
● It’s easy to write Coccinelle checks
● Generates patches for you
● Useful for kernel hardening
● Nicer than Smatch for checking macros

Madrid 2024

Smatch
● Flow analysis
● Cross functions analysis
● Works on pre-processed code

Madrid 2024

Flow analysis
Flow analysis is the math to understand code.

if (x == 1)
 y = 2;
else

 y = 3;

if (x == 2)
 __smatch_implied(y); // ← prints “y = 3”

Madrid 2024

What Smatch tracks
● Value ranges: x = 0,20-40
● What values can be controlled by the user
● Variable comparisons: x < y
● Buffer sizes: p is 40-50 bytes
● If a variable has been capped to an unknown value
● If we are in an impossible code path
● If a function will return -EINVAL if we pass -100
● This function returns negative error codes

Madrid 2024

Cross Function Analysis

{ "__request_region", ALLOC, 1, "$", &valid_ptr_min_sval, &valid_ptr_max_sval },
{ "release_resource", RELEASE, 0, "$->start" },
{ "__release_region", RELEASE, 1, "$" },

Madrid 2024

Cross Function Analysis

● smdb.py function
● smdb.py return_states function
● smdb.py functions struct_name member
● smdb.py where struct_name member

Madrid 2024

Difficult problems
● Recursion
● It takes a too much memory to track how every variable is related to every other

variable

● Smatch is slow
● Smatch takes shortcuts parsing loops
● Smatch doesn’t understand threads
● Smatch is bad at tracking data in arrays

Madrid 2024

Unsolvable Problems
● Bug vs Feature
● Specification issues
● Firmware issues
● Hardware issues

Madrid 2024

False positives
● After you fix the bugs, you are left with 100% false positives
● Only review new warnings
● Don’t silence false positives (unless it makes the code more readable)

Madrid 2024

False positives
● Any warning which is not a bug is a false positive:

 unsigned int x;
 ...
 if (x < 0)
 return -EINVAL;
 ...
 if (x < 0 || x > 9)
 return -EINVAL;

Madrid 2024

False positives
● Any warning which is not a bug is a false positive:

 int i;
 ...
 for (i = 0; i < ARRAY_SIZE(foo); i++) {

Madrid 2024

Solvable problem #1 = vs ==

● Bad: if (x = NULL) {
● Good: if (x == NULL) {

Madrid 2024

Solvable problem #1 = vs ==
● Yoda Code

if (NULL == x) {

NO!

Madrid 2024

Solvable problem #1 = vs ==

● Testing

Madrid 2024

Solvable problem #1 = vs ==

● GCC: Add parentheses to show it is intentional

 while ((x = frob()) {

Madrid 2024

Solvable problem #1 = vs ==
● Side note about intentionality:

 int ret = 0;
...

 if (x == 3)
 goto done;

...
done:
 return ret;

Madrid 2024

Solvable problem #1 = vs ==
● Side note about intentionality:

 int ret;
...

 if (x == 3) {
ret = 0;

 goto done;
}
...

done:
 return ret;

Madrid 2024

Solvable problem #1 = vs ==
● More side notes about intentionality part 2:

Bad:
 if (!ret)
 return ret;

Good:
 if (!ret)
 return 0;

Madrid 2024

Solvable problem #1 = vs ==
● Back to the talk:

● GCC: Add parentheses to show it is intentional

 while ((x = frob()) {

Madrid 2024

Solvable problem #1 = vs ==

● Checkpatch: Move assignments out of if statements
● Checkpatch: Write NULL checks as if (!x) {

x = frob();
if (!x) {

Madrid 2024

Solvable problem #1 = vs ==

● Smatch: Complain about if (x = CONSTANT) {
● Smatch: Complain about if (x = &foo) {

- result = ASSERT(offset = sizeof(buffer),
+ result = ASSERT(offset == sizeof(buffer),

Madrid 2024

Solvable problem #1 = vs ==
RESULTS
● 27 bugs total since 2005
● Most bugs caught by static analysis

Further ideas:
● if (x == a || y = b || z == c) {
● ASSERT(x = 1);
● Double parentheses for ternary operations
● = vs == in parameters: frob(x = 1);
● Reversed the other way, using == when = is intended

Madrid 2024

Solvable problem #2 tun.c
Famous Bug: CVE-2009-1897

struct sock *sk = tun->sk;

if (!tun)
return POLLERR;

● -fno-delete-null-pointer-checks
● mmap_min_addr changes
● Smatch and Coccinelle checks for inconsistent NULL checking

Madrid 2024

Solvable problem #3 goto fail
Famous Bug: CVE-2014-1266

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail; // ← OOPS COPY AND PASTE

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;

...
fail:

SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;

Madrid 2024

Solvable problem #3 goto fail
● GCC/Smatch: missing curly braces
● Smatch: unreachable code
● Smatch: inconsistent indenting

Related checks
● Smatch: missing error code

Failed approach
● Looking for duplicate lines

Madrid 2024

Typical Smatch Check
● Add a hook for allocations
● Add a hook for frees
● Add a hook for returns statements

○ Is this an error path?
○ Are there any variables still on allocated state?

● Write it as quickly and broadly as possible
● Rewrite it to filter out false positives

Madrid 2024

Reviewing CVEs
● Most CVEs are race conditions
● Add a new function to the list of functions that get user data
● A bug is a bug

commit 6d97e55f7172303082850c1de085d06fc1e57d17
Author: Dan Carpenter <error27@gmail.com>
Date: Mon Oct 11 19:24:19 2010 +0200

vhost: fix return code for log_access_ok()

Madrid 2024

size_add() size_mul()
● Using the results for math
● Saving the results in anything besides unsigned long
● Passing the results to a function that takes an unsigned int

Madrid 2024

Scoped based cleanup

struct gpio_sim_device *dev __free(kfree) = kzalloc(sizeof(*dev), GFP_KERNEL);

● Not initializing the pointer to NULL (checkpatch?)
● Re-assigning uncleaned up pointers
● Declaring a variable as function scope when it is assigned in a loop
● Adding an automatic cleaned up pointer to a list

Madrid 2024

Variables i and j that aren’t incremented
● Match declarations

○ Is this variable named “i” or “j”
● Match when “i” or “j” are modified

○ If we assign 0 to the variable mark it as an &set
○ If we set it to anything else mark it as &okay

● If we have variable which is &set but never &okay then print a warning

Madrid 2024

Suspicious negatives

 case AXI_DAC_PHASE_TONE_1:
 case AXI_DAC_PHASE_TONE_2:
 return axi_dac_phase_set(st, chan, buf, len,
- private - AXI_DAC_PHASE_TONE_2);
+ private == AXI_DAC_PHASE_TONE_2);

Madrid 2024

Takeaways
● Once a month review fixes and brainstorm about how they could have been

detected faster
● Nibble away at the bugs
● If it’s stupid but it works then it isn’t stupid

Thank you
For more information

Dan Carpenter <dan.carpenter@linaro.org>
Mailing list: <smatch@vger.kernel.org>

mailto:dan.carpenter@linaro.org

