
Simple, Yocto, Secure Boot
Using new systemd features to pick all three!

Maybe… Eventually…

At some point…



Madrid 2024

About me…

Name: Erik Schilling

with Linaro since beginning of 2023.

before that I worked on Embedded Linux 
projects in agriculture.

Mail: erik.schilling@linaro.org

🤔

mailto:erik.schilling@linaro.org


Madrid 2024

What I mean with secure boot today…

1

Firmware

TF-A + u-boot providing UEFI 
interface.

Kernel

Kernel with built-in drivers.

2

Initramfs

Early user-space, more kernel 
drivers, may decrypt / verify the 

final user-space.

3

Final User-Space

The booted system.

4

mostly this half…



Madrid 2024

The (assumed) Goal

Final system:

Your exact use-case may differ!
(but you may find the same building blocks useful!)

EFI read-only
filesystem encrypted user data

kernel, initramfs executables,
“distro” data

configuration,
user data



Madrid 2024

Problem 1: How to create a secure user partition?
A read-only filesystem is great for reliability. However it is mostly useful for the binaries 
and data that is common across a fleet of devices.

But eventually, we will want to store data or configuration somewhere!

We will want to create a filesystem that allows writing, but still encrypts and ensures 
authenticity of the data on disk.

Ideally, the keys for this should be generated on the device and should never leave it!



Madrid 2024

Privately encrypted data in practise (today)
1. Either pre-allocate or dynamically create the partition.
2. If pre-populated data is required, we need to move that away temporary 

(dangerous!)
3. Create the LUKS partition.
4. Enroll key in TPM.
5. Copy pre-populated data back (if needed).

That’s a lot of steps (that can go wrong)!



Madrid 2024

Example from TRS (enrollment only)

tpm2_createprimary -Q --hierarchy=o --key-context=prim.ctx
tpm2_loadexternal --key-algorithm=rsa --hierarchy=o \

--public=signing_key_public.pem --key-context=signing_key.ctx \
--name=signing_key.name > /dev/null

tpm2_startauthsession --session=session.ctx
tpm2_policyauthorize --session=session.ctx --policy=authorized.policy \

--name=signing_key.name > /dev/null
tpm2_flushcontext session.ctx
cat ${passfilename} | tpm2_create --hash-algorithm=sha256 \

 --public=auth_pcr_seal_key.pub --private=auth_pcr_seal_key.priv \
--sealing-input=- --parent-context=prim.ctx --policy=authorized.policy > /dev/null

tpm2_load -Q --parent-context=prim.ctx \
--public=auth_pcr_seal_key.pub --private=auth_pcr_seal_key.priv \
--name=seal.name --key-context=seal.ctx > /dev/null

tpm2_evictcontrol -Q -C o -c ${TPM_NVINDEX_ROOTFS} 2> /dev/null || \
echo "initramfs: TPM NVRAM ${TPM_NVINDEX_ROOTFS} index deleted."

tpm2_evictcontrol --hierarchy=o --object-context=seal.ctx ${TPM_NVINDEX_ROOTFS} > /dev/null

SOURCE

https://gitlab.com/Linaro/trustedsubstrate/meta-ledge-secure/-/blob/ca7c0c2ec0767d0c8f052374b63984ade8ff3ad4/meta-ledge-secure/recipes-ledge/images/files/init.ledge#L173


Madrid 2024

Solution: systemd-repart
# 10-esp.conf
[Partition]
Type=esp

# 50-usr.conf
[Partition]
Type=usr

# 60-root.conf
[Partition]
Type=root
Format=ext4
Encrypt=tpm2
FactoryReset=yes

EFI readonly
filesystem <empty>

EFI readonly
filesystem

ext4 under LUKS
(enrolled into TPM)

matched against 10-esp.conf, 50-usr.conf.
Therefore left unchanged. 60-root.conf is not 

found, therefore it 
will get created.pr

oc
es

se
d 

in
 a

lp
ha

be
tic

al
 o

rd
er

EFI readonly
filesystem FACTORY IMAGE

BEFORE BOOT

AFTER BOOT

minimal factory image flashed to device storage 
(hopefully) leaves empty space



Madrid 2024

Aside: / or /usr as read-only
Yocto comes with existing tooling (read-only-rootfs) to build a readonly filesystem.

Here, a filesystem for / is created, then a bunch of symlinks that need to be mutable to 
a volatile tmpfs.

Yocto’s read-only-rootfs solves some common scenarios, but some fundamental 
problems remains:
● Many /etc locations are often assumed to be writable by software. We will need 

a lot of exceptions.
● /var is (by default) volatile and discarded after reboot.
● Tweaking any of this quickly becomes non-trivial.



Madrid 2024

Aside: / or /usr as read-only
Solution: Only boot with /usr populated!

Initramfs will mount /usr into / before switching to /.

Systemd is perfectly fine booting with only /usr. It will automatically create all necessary 
files on / automatically (through systemd-tmpfiles.d).
(Yocto currently does not 100% like this and a few tweaks are required)

This solution does not require careful symlinks and is easy to factory reset (just wipe 
the partition).

EFI /usr
(readonly)

/
(writable)



Madrid 2024

Factory image:

After first boot:

Problem 2: How to secure /usr?

EFI /usr encrypted user data

kernel, initramfs executables,
“distro” data

configuration,
user data

EFI /usr
How to secure 
this part?



Madrid 2024

dm-verity

root hash

hash 1 hash 2

hash 2.2hash 2.1hash 1.2hash 1.1

block 3block 2block 1block 0 block 4 block 7block 6block 5

signature over root hash

data
(partition 1)

hashes
(partition 2)

signature
(partition 3)

on-disk layout:

also called “verity”



Madrid 2024

dm-verity in practise (today)

The intermediate .wks.in only offers limited flexibility (always tagged as / in .wks).

root_hash is hard to handle: It has to be read from a intermediate file. This makes 
dependency ordering annoying for signing or embedding into kernel command lines.

⇒ The solution requires quite some setup and customization for deployment (splitting 
into separate images that are built in stages may help).

rootfs build dm-verity-img.bbclass

(from meta-security)

dm-verity .wks.in final .wks final image

METADATA
(root_hash, …) (left to the user)



Madrid 2024

dm-verity (maybe tomorrow): systemd-repart
It could be simpler!

systemd-repart can also create disk images from scratch!

> systemd-repart --root="<path-to-rootfs>" \
--definitions="<path-to-repart-conf-dir>" \
--empty=create \
--size=auto \
--dry-run=no \
--private-key=db.key --certificate=db.crt \
--offline=yes \
output.img

# 02-usr.conf
[Partition]
Type=usr
CopyFiles=/usr/:/
Verity=data
VerityMatchKey=usr
Minimize=guess

# 02-usr-verity.conf
[Partition]
Type=usr-verity
Verity=hash
VerityMatchKey=usr
Minimize=guess

# 04-usr-verity-sig.conf
[Partition]
Type=usr-verity-sig
Verity=signature
VerityMatchKey=usr



Madrid 2024

Problem 3: How do we get this mounted?
We have a data, verity and signature partition. How do we get it mounted?

We could bake the roothash + signature into the kernel command line. However, this 
info would likely live somewhere on the factory image that we just built:

systemd-repart built image

EFI data verity sig

Image is built in one step. Customization of the kernel command line 
would likely need to be a post-processing step on the EFI partition.

✘
but we do not need this!



Madrid 2024

Introducing: uapi-group
“The userspace API (“uapi”) group is a community for people with an interest in innovating 
how we build, deploy, run, and securely update modern Linux operating systems. It serves as 
a central gathering place for specs, documentation, and ideas.”
https://uapi-group.org/

The group has a decent overlap with the systemd development community, but is set 
up as standalone interest group.

We are going to look at:
● Discoverable Partition Specification
● Unified Kernel Images
● Bootloader Interface

https://uapi-group.org/


Madrid 2024

Discoverable Partitions Specification
Partition Type UUID

EFI System Partition SD_GPT_ESP
c12a7328-f81f-11d2-ba4b-00a0c93ec93b

Root Partition (AArch64) SD_GPT_ROOT_ARM64
b921b045-1df0-41c3-af44-4c6f280d3fae

/usr/ Partition (AArch64) SD_GPT_USR_ARM64
b0e01050-ee5f-4390-949a-9101b17104e9

Root Verity Partition (AArch64) SD_GPT_ROOT_ARM64_VERITY
df3300ce-d69f-4c92-978c-9bfb0f38d820

/usr/ Verity Partition (AArch64) SD_GPT_USR_ARM64_VERITY
6e11a4e7-fbca-4ded-b9e9-e1a512bb664e

Root Verity Signature Partition (AArch64) SD_GPT_ROOT_ARM64_VERITY_SIG
6db69de6-29f4-4758-a7a5-962190f00ce3

/usr/ Verity Signature Partition (AArch64) SD_GPT_USR_ARM64_VERITY_SIG
c23ce4ff-44bd-4b00-b2d4-b41b3419e02a

systemd-repart will assign 

these automatically!



Madrid 2024

Warning!
Blindly using this auto-discovery 
won’t give you a secure system!

You will want to set an image-policy to avoid mounting unauthenticated partitions!

https://www.freedesktop.org/software/systemd/man/254/systemd.image-policy.html


Madrid 2024

Discoverable Partitions Specification
Systemd will scan the disk that was selected as boot medium and auto-mounts 
discovered partitions.

In our case of a dm-verity backend /usr partition it will:

1. Detect the data, verity and verity signature partitions.
2. Read the root_hash from the verity signature metadata.
3. Verify the signature on the root_hash.
4. Mount the partition.



Madrid 2024

Problem 4: Which disk is booted?
The auto-discovery mechanism needs to know which disk was booted.

We won’t detail this here… but…

systemd simply defines a set of expected EFI vars for this:
https://systemd.io/BOOT_LOADER_INTERFACE/

https://systemd.io/BOOT_LOADER_INTERFACE/


Madrid 2024

Problem 5: This logic has to happen somewhere!
Since we auto-discover the partition where all our software lives one, we need an 
initramfs to get us started!

Building an initramfs with systemd is fairly straight forward. But now we have another 
component that we need to verify.

In fact, we have not covered any of the early boot components:
● Kernel
● Kernel command line
● Splash screen
● Initramfs   ⇐ this is our new requirement!
● Device-Tree



Madrid 2024

The Problem with Problem 5:
Only binaries can easily be verified against signatures before execution.

UEFI also specifies EFI_PKCS7_VERIFY_PROTOCOL, but the protocol is 
not mandated by Arm SystemReady standards.

⇒ There is no readily available way to verify non-executable binaries.

Signing and validating all of the components separately may also easily 
become cumbersome.



Madrid 2024

Unified Kernel Image
Let’s just stuff it all into one big EFI binary!

nth paddr            size     vsize perm type name
――――――――――――――――――――――――――――――――――――――――――――――――――――――――
0   0x00000400    0x19400   0x1a000 -r-x ---- .text
1   0x00019800     0x6000    0x6000 -r-- ---- .rodata
2   0x0001f800      0x200    0x1000 -rw- ---- .data
3   0x0001fa00      0x200    0x1000 -r-- ---- .sbat
4   0x0001fc00      0x200    0x1000 -r-- ---- .sdmagic
5   0x0001fe00      0x200    0x1000 -r-- ---- .reloc
6   0x00020000      0x400    0x1000 -r-- ---- .osrel
7   0x00020400      0x200    0x1000 -r-- ---- .cmdline
8   0x00020600      0x200    0x1000 -r-- ---- .uname
9   0x00020800      0x200    0x1000 -r-- ---- .pcrpkey
10  0x00020a00  0x9f59600 0x9f5a000 -r-- ---- .initrd
11  0x09f7a000     0x1200    0x2000 -r-- ---- .pcrsig
12  0x09f7b200   0xdfe400  0xdff000 -r-- ---- .linux

https://uapi-group.org/specifications/specs/unified_kernel_image/

The solution:
Combine the kernel + initramfs + 
splash + device-tree into a 
combined binary.

A stub then extracts the info and 
invokes the actual kernel.

The bootloader only needs to 
verify combined binary.

https://uapi-group.org/specifications/specs/unified_kernel_image/


Madrid 2024

Unified Kernel Image
Building a UKI can be done with objcopy. But systemd also provides a neat little tool:

ukify.py build \
--linux linux.efi \
--initrd core-image-base-v8a-arm64.cpio.xz \
--secureboot-certificate db.crt \
--secureboot-private-key db.key \
--cmdline 'console=hvc0 rootwait' \
--os-release=@os-release \
--efi-arch aa64 \
--stub path/to/linuxaa64.efi.stub



Madrid 2024

Where is the catch?
Most of the things shown are usable today!

But: The integration work in Yocto is still lacking. Luckily WIP patches are starting to hit 
the maillinglists:
● [PATCH] uki: Add support for building Unified Kernel Images

○ by: Michelle Lin <michelle.linto91@gmail.com>
● [PATCH v5] systemd-boot: Add recipe to compile native

○ by: Viswanath Kraleti <quic_vkraleti@quicinc.com>
● [PATCH RFC] systemd-repart.bbclass: provide build-time partitioning helper

○ by: Erik Schilling <erik.schilling@linaro.org>
Further interesting patches bringing integration of new systemd features:
● [PATCH v5 0/3] pkg-database and systemd-sysext image

○ by: Johannes Schneider <johannes.schneider@leica-geosystems.com>

https://lore.kernel.org/openembedded-core/20230901233231.1109712-1-michelle.linto91@gmail.com/
https://lore.kernel.org/openembedded-core/20231228154710.2410218-1-quic_vkraleti@quicinc.com/
https://lore.kernel.org/all/20240426-systemd-repart-v1-1-a6a710a14a8c@linaro.org/
mailto:erik.schilling@linaro.org
https://lore.kernel.org/openembedded-core/20240410071827.4099903-1-johannes.schneider@leica-geosystems.com/


Madrid 2024

The catch… continued…
Support for auto-discovery of /usr partitions under verity is not currently supported yet.

Early boot TPM discovery has some problems.

One still needs to pass the usrhash through the kernel command line.

Which means that UKI’s end up depending on the filesystem build again 😥.

No tooling for resigning images (UKI + verity-signature partition) against production 
keys.

https://github.com/systemd/systemd/issues/24027
https://lore.kernel.org/all/20240422112711.362779-1-mikko.rapeli@linaro.org


Madrid 2024

Thanks to

Mikko Rapeli (Yocto integration)
Ilias Apalodimas (UEFI and Bootloader)

Daniel Thompson (Slide review)
Luca Boccassi (Systemd discussions)
Fabian Vogt (Systemd discussions)

Lennart Poettering (Systemd discussions)
Daan De Meyer (Systemd discussions)



Thank you


