>

linaro
e Ramalama
2025 Making Al Workloads on ARM
Boring

Sergio Lopez Pascual & Eric Curtin

An easy, secure, and open way
to run and serve LLMs locally.

Have you...

Experimented with an LLM?

Run an LLM locally?

Built an Al-powered application?

Introducing Ramal.ama

r~~0
| '
\
~-O
Easy to use Secure Open
Run or serve a chatbot Experiment with LLMs Built using open standards
with a single command while keeping your data and Al building blocks

private

> ramalama run gemma3

Better with containers: easy, secure and open

quay.io Container Registry
Built on Podman ramalama

Pulls in the relevant | container image ::I

container image

Podman / Docker
Deploy to an OCI

container registry

OCI Container Registry

Running the model

Complexity made easy

. t t 1
Which o aize It's hard to get hardware

should | choose? alignment technique acceleration working!

Performance made easy

Auto-detects system configuration and switches

to the best performing accelerator stack

» Out-of-the-box easy:
CPU-only

» Minimal setup: open source
accelerator stack (Vulkan)

» Full performance:
vendor-specific accelerator stack

Security: local and containerized

Local machine

Container

“

Model

» Local: where is your data going?

» Containerized: provides tighter
control and isolation

Open: maximizing choice

Containerization enables modularity, easily swapping out for new blocks

Model Registry Choice Inference Runtime Choice

ST BN LlaMAc [wHisperc B

Serve with standard APls

> ramalama serve gemma3

OpenAIRESTAPIs lama Stack

Connecting the front and back-ends

Industry standard endpoint APIs together

Getting to production

Deploy to Kubernetes without being a Kubernetes expert

Single-Node: Quadlet

model content data

CINEIEINE

model content data

Quadlet configs

- Multi-Node: Kubernetes
container engine :
model content data

K8s commands

Al the open source way

Granite ‘ LLaMAG: wHISperé

& RedHat

Cloud Native Al Runs on Arm @ Kubecon

A collaborative effort between Ramal.ama/Universal

-, aVIAV ' aYaYalda' aVlaa (~

14

Arm Support

AMPERE.

NS

HUAWEI

<3

NVIDIA.

|(an

L'AI\I\ /

Why Arm for Al?

- Power efficiency (Al workloads are power hogs)

- Multiple components for inference: GPU, NPU, CPU, etc.

- Scalable architecture from iot to edge to cloud (in terms
of horizontal and vertical scalability)

- Edge Al brings lower-latency Al responses

- High memory bandwidth

- Unified memory

Why Ramal.ama for Arm?

- Other Al tools tend to focus on Nvidia for x86_64, maybe
macOS on ARM for Desktop usage, but often not Linux
on ARM

- Avoid lock-in to a specific piece of hardware

- Avoid lock-in to a specific model registry (ollama, hf,
dockerhub, etc.)

- Cloud native approaches, can use existing

container infrastructure & RedHat

Vulkan as common language for GPUs

- Supporting multiple frameworks is cumbersome.
- Multiple container images.
- Very large footprint.

- GLSL is expressive enough for implementing good
performing shaders/kernels.

- Open Source stack (Mesa).

MacOS: enabling GPU in containers

- Containers on macOS runina VM

Linux VM

Container

Application

YWukan

macOS

libkrun

virtio-gpu

MoltenVK

MacOS: enabling GPU in containers

- Create a machine with libkrun as provider

Settings Resources > Podman

Create Podman machine

Resources
Proxy CPU(s): 6 ¢

Registries

Memory: 4 GB ¢’
Authentication

Chiicols Disk size: 100 GB &
Kubernetes
I Image Path (Optional):

Experimental

Preferences

Image URL or image reference (Optional):
Use 'registry/org/image:version' for image reference

Machine with root privileges:

Enabled .

Provider Type:
GPU enabled (LibKrun)

Start the machine now:
Enabled o

Close Create

20

MacOS: running ramalama

- On macOS, execute “ramalama run gemma3”
- Inference engine (llama.cpp, whisper.cpp, etc.) will run on

Linux within podman-machine

Linux llama.cpp binaries running on macOS?

- Yes and with accelerated GPU access

22

Linux llama.cpp binaries running on macOS?

- llama-server binary is build with vulkan support

- llama-server uses mesa implementation for vulkan

- This communicates with macOS via virtio-gpu

- Which speaks to MoltenVK

- MoltenVK acts as the translator, translates Vulkan to Metal

so we can access the GPU

___________________________ +
|

| ramalama run gemma3 |

The Apple Solutio

oo o +

|
|

| e + B it e +

| | Pull inferencing | | Pull model layer |

+--———————— | runtime (vulkan) |---------- >| (gemma3) |

e an LT + e +

| Repo options: |

ot e +-+

I
v
‘ .o. e
containers
I I |
v v v

om e +

| Start with |

| vulkan runtime |

| and |

| gemma3 |

Demo

- Lets demo “ramalama serve gemma3” and Open WebUI

Join the conversation on Matrix!

Join Us!

O github.com/containers/ramalama

https://ramalama.ai

