> Status of Rust on

Connect
2025

Why Rust on Zephyr?

Safer embedded applications
Modern tooling (Cargo, crates.io)
Memory safety without GC
Fearless concurrency

2
linaro
Connect

Project Goals

Write Zephyr apps entirely in Rust
Clean bindings to Zephyr APIs
Async-friendly device drivers
Simple developer experience

2D

linaro
Connect

Not Goals .«

Rewrite Zephyr in Rust

Replacing Zephyr’s build system
Replacing cargo (Rust’s build system)
Eliminating all C code

2D

linaro
Connect

=
Architecture Overview linaro

CMakelLists.txt
Kconfig
boards/**
drivers/**

zephyr-lang-rust

CMakeLists.txt

Kconfig
CMakelLists.txt zephyr/Cargo.toml
prj.conf zephyr-sys/Cargo.toml
Cargo.toml zephyr-build/Cargo.toml

src/lib.rs zephyr-macros/Cargo.toml 5

2D

Current Status linaro

e Rust application builds for Zephyr
e Cargo integration (CMake builds Zephyr, calls cargo to build Rust code)
e Bindings for:

@)

o O O O

O

Sync things: timers, atomics, channels, mutex/condvar, Arc, semaphores
Threads: declarative, decorate regular functions to make threads

Work queues

Logging

Devicetree -> Rust, A few drivers: GPIO, Uart, 12C

Kconfig -> values in code, Booleans available for ‘cfg’ macro

e Basic async support:

O

O

Per-Zephyr-thread async executor (see next presentation)
Timer driver for embassy-time

#![no_std] ~

linaro
use zephyr::raw::GPIO OUTPUT ACTIVE; Connect

use zephyr::time::{sleep, Duration};

#[no_mangle]
extern "C" fn rust main() {
let mut led® = unsafe {
zephyr: :devicetree::aliases::led0::get instance().unwrap()

}

led0.configure(&mut gpio token, GPIO OUTPUT ACTIVE);
let duration = Duration::millis at least(500);
loop {
led0.toggle pin(&mut gpio token);
sleep(duration);

What’s Working

Core Zephyr APIs accessible

Async executors can run in threads
Small real apps running on real hardware
Community interest starting

2D

linaro
Connect

2D

What’s Next linaro

Expand subsystem coverage (networking, sensors, usbd, etc)
More driver coverage

Deeper async (ksem_take_async, etc)

Better DT integration

Better (for Rust and Zephyr) logging support

Userspace?

2
linaro

Challenges iner

Binding maintenance. Bindgen makes calls directly to C possible, but nice Rust APIs
can break with Zephyr APl changes

Mapping C APIs to safe Rust patterns

Small ecosystem. Reviews are challenging

10

- |
Get Involved linaro

Try it!

Suggest improvements/submit patches

Help build APIs

Spread the word
https://qithub.com/zephyrproject-rtos/zephyr-lang-rust

1

https://github.com/zephyrproject-rtos/zephyr-lang-rust

>

linaro
Connect Thank You!

2:0:72:5

	Slide 1: Status of Rust on Zephyr
	Slide 2: Why Rust on Zephyr?
	Slide 3: Project Goals
	Slide 4: Not Goals (yet)
	Slide 5: Architecture Overview
	Slide 6: Current Status
	Slide 7
	Slide 8: What’s Working
	Slide 9: What’s Next
	Slide 10: Challenges
	Slide 11: Get Involved
	Slide 12: Thank You!

