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Why Rust on Zephyr?

Safer embedded applications
Modern tooling (Cargo, crates.io)
Memory safety without GC
Fearless concurrency

2
linaro
Connect



Project Goals

Write Zephyr apps entirely in Rust
Clean bindings to Zephyr APIs
Async-friendly device drivers
Simple developer experience
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Not Goals .«

Rewrite Zephyr in Rust

Replacing Zephyr’s build system
Replacing cargo (Rust’s build system)
Eliminating all C code
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Architecture Overview linaro

CMakelLists.txt
Kconfig
boards/**
drivers/**

zephyr-lang-rust

CMakeLists.txt

Kconfig
CMakelLists.txt zephyr/Cargo.toml
prj.conf zephyr-sys/Cargo.toml
Cargo.toml zephyr-build/Cargo.toml

src/lib.rs zephyr-macros/Cargo.toml 5
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Current Status linaro

e Rust application builds for Zephyr
e Cargo integration (CMake builds Zephyr, calls cargo to build Rust code)
e Bindings for:

@)
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Sync things: timers, atomics, channels, mutex/condvar, Arc, semaphores
Threads: declarative, decorate regular functions to make threads

Work queues

Logging

Devicetree -> Rust, A few drivers: GPIO, Uart, 12C

Kconfig -> values in code, Booleans available for ‘cfg’ macro

e Basic async support:

O

O

Per-Zephyr-thread async executor (see next presentation)
Timer driver for embassy-time



#![no_std] ~

linaro
use zephyr::raw::GPIO OUTPUT ACTIVE; Connect

use zephyr::time::{sleep, Duration};

#[no_mangle]
extern "C" fn rust main() {
let mut led® = unsafe {
zephyr: :devicetree::aliases::led0::get instance().unwrap()

}

led0.configure(&mut gpio token, GPIO OUTPUT ACTIVE);
let duration = Duration::millis at least(500);
loop {
led0.toggle pin(&mut gpio token);
sleep(duration);



What’s Working

Core Zephyr APIs accessible

Async executors can run in threads
Small real apps running on real hardware
Community interest starting
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What’s Next linaro

Expand subsystem coverage (networking, sensors, usbd, etc)
More driver coverage

Deeper async (ksem_take_async, etc)

Better DT integration

Better (for Rust and Zephyr) logging support

Userspace?
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Challenges iner

Binding maintenance. Bindgen makes calls directly to C possible, but nice Rust APIs
can break with Zephyr APl changes

Mapping C APIs to safe Rust patterns

Small ecosystem. Reviews are challenging
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Get Involved linaro

Try it!

Suggest improvements/submit patches

Help build APIs

Spread the word
https://qithub.com/zephyrproject-rtos/zephyr-lang-rust
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https://github.com/zephyrproject-rtos/zephyr-lang-rust
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