&0 Fast and justas
linaro random

Connect
2025 getrandom() in userspace

WIN e

. Linux API history to obtain entropy
. userland/glibc API to get entropy
. Attempts to provide a CSRNG in

glibc/userland

. The vDSO getrandom implementation

First on how kernel improved

0
Linux APls linaro

e Entropy is used in a lot of applications

o BY the kernel itself on multiple places
o On Cryptography for key generation and other places
o For algorithm hardening, like Hash Tables initialization or heap hardening

e Having a good and fast CSRNG (Cryptographic Secure Random Number Generation)

allows multiple application to leverage it without reinventing the wheel
o And also to avoid multiple pitfalls by reimplement it

e Provide a good entropy source is not easy

0
Current Linux APls linaro

e getrandom() - Linux 3.17

o Added to overcome two main issues with random devices: file-descriptor exhaustion and
lack of procps access (i.e chroot and/or container).
o Designed to use /dev/random entropy pool

e /dev/urandom

o Dot not block
o ‘Good enough’ entropy at the time of call

e Linux 5.5 change /dev/random to behave like getrandom()

o It would only block untils it is initialized
o Added GRND_INSECURE to avoid blocking, by provided ‘good enough’ entropy

D
Recent Linux developments inoro

e Linux 5.17 added a mechanism for VM forks to reinitialize the CSRNG state
o Theideais to avoid VM snapshots or duplications to have the same entropy pool state.

e Linux 5.17 as added a per-cpu CSRNG state with Fast Key Erasure
o Improved multicore performance due lockless fast-path entropy pool access

e Linux 5.18 improved /dev/urandom initialization with ‘opportunistically’ heuristics

o If architecture has fast cycle counters (rtdsc, cntfrg_elO, etc.) it will try try to make
/dev/urandom as good as /dev/random

e Linux 6.11 added the vDSO getrandom implementation
o Initially for x86, but later for aarché4, loongarch, powerpc, and s390 on 6.12

glibc/userspace API to obtain entropy

o)

linaro
Connect

e AT_RANDOM

o Used internally to initialize stack guard (for -fstack-protector) and to pointer mangling
o Very limited entropy (32 or 64 bit)

e getrandom() added on glibc 2.25

o Cancellable syscall wrapper

e getentropy() added on glibc 2.25
o From BSD system
o Implemented using getrandom(), but non-cancellable
o Limited entropy (maximum of 256 bytes per call)

9

linaro
Connect

e arc4random() on glibc 2.36
o Also from BSD
o Should not fail, and abort process if entropy can not be obtained
o Current implemented on top of getentropy() with fallback to /dev/urandom

The arc4random stirred the discussion on how properly
provide a CSRNG in userland

Attempts to provide a CSRNG in
glibc/userland

o

Some history inore

e Florian Weimer proposed a AES-128 based arc4random for glibc 2.28

@)
@)
@)

Per-thread CRNG state

Aimed to use crypto instructions like AES-NI and RDRAND

Complex fork detection to support multiple kernel version (with and without
MADV_WIPEONFORK).

Lockless and async-signal-safe.

Patch stalled without review

e | proposed a ChaCha20 based one for glibc 2.36

@)

(@)
@)
@)
@)

ChaCha20 is performance and lightweight stream cipher.

Simpler and limited fork-detection: either MADV_WIPEONFORK or an atfork handler
Based on OpenBSD implementation

Arch-specific block Chacha20 optimizations (aarché4, x86, powerpc, s390x)

After some iteration it was committed

1"

D
More history inoro

Just after inclusion Jason Donerfeld raised multiple concerns about the

implementation
o How to properly reseed the crng state where only kernel has all the required information (on
VM fork, on system resume, from hibernation)?
o The userland CRNG state might leak dependending on how VMs are configured.

e There were more discussion if arc4random should be designed as a CSRNG or not
o Although documentation is not clear, user assume it is from BSD design

e The Chacha20 implementation was reverted in favor of one based on getrandom()

e And as so it was released, users complained that it was too slow (BZ 29437)

12

https://sourceware.org/bugzilla/show_bug.cgi?id=29437

The vDSO getrandom() support

linaro

Requisites for a userland CRNG

e User expects a CSRNG, otherwise they roll their own (and most likely not handling all
the corner cases)

e The userspace implementation should provide the same security guarantee as the
kernel

e Itrequires low-latency and good throughput
o Otherwise the syscall is good enough

14

e
The vDSO symbol provides all the guarantees &%

e The kernel provides the algorithm and can signal the userland when to reseed

o The userland code should not leak information
o So it requires a arch-specific implementation

e The CSRNG state kept in userland requires some extra semantics

o It should never be backed by swap

o It can zero out anytime under memory pressure (the state can be recreated any time)
o It should not be counted as mlocked

o A new mmap flag (MAP_DROPPABLE)

e To allow a per-thread lockless implementation the userland requires some extra

management
o A new glibc getrandom() implementation if vDSO is provided

15

o)
The kernel side linaro

Mapped on each
process

[vdso]

\

__kernel_getrandom \

Kernel device driver __cvdso_getrandom

/

__arch_chacha20 _block_nostack Userland getrandom()
/dev/irandom
_credit_init_bits \ —
crng_reseed N
—~ \ \ __vdso_u_rng_data
N is_ready

™ generation

16

0
The kernel side linaro

e The crypto driver is responsible to advertise when the crypto subsystem is ready

(is_ready) and when to reseed (generation) through the vvar (datapage)
o Itis mapped on each process and shared among all processes

e The vDSO generic implementation (__cvdso_getrandom) check if reseed is required
and call the getrandom syscall to if so

e If everythingis ok, it call the arch-specific Chacha20 implementation

(__arch_chacha20_blocks_nostack) which generates entropy on userland state

o Itis a simplified Chacha20 implementation that does not leak any state on stack and work
only on multiple of cypher blocks.

17

I linaro
Userland side
CRNG state grnd_alloc getrandom()
kernel_getrandom
per-thread state lock — -9
per-thread state per-thread state list

per-thread state thread 1

/ getrandom_buf
per-thread state

per-thread state \\ thread 2

getrandom_buf

per-thread state

Allocated using MAP_DROPABLE

18

o

glibc implementation inaro

e Kernel API

©)

@)

O

The kernel vDSO provides the required mmap flags and the opaque state size used.
Some extra care to align the opaque state to L1 data cache line size to avoid false-sharing.
The opaque state is used a per-thread CRNG state

e At glibc initialization

©)

Query the vDSO for the mmap flags and opaque state params

e On getrandom()

O

Try to reserve a per-thread opaque state from the per thread list and update the TLS
pointer.

Reentrancy handling, fallback to syscall.

Call the vDSO with similar arguments as the syscall plus the opaque state

Release the per-thread opaque state o

D
glibc challengers inoro

e The data structures
o The per thread list is simple block allocator organized as FIFO.
o Neither the CRNG state nor the per thread list are deallocated or shrink during execution
o The per thread list requires to be async-signal-safe, so it is based on mmap

e fork() handling: the per thread list needs to be in a consistent state on any case, even

though there is memory leak during fork
m Extra care with memory fences on its internal update

20

Performance numbers

Latency

o

linaro
Connect

e The kernel has a benchmark to evaluate the vDSO improvements
o tools/testing/selftests/vDSO/vdso_test_getrandom
o It focus on small buffers (32-bits), which seems the most usual case

$./vdso_test getrandom
vdso: 25000000 times
libc: 25000000 times
syscall: 25000000 times

$./vdso_test_getrandom
vdso: 25000000 x 256
libc: 25000000 x 256

bench-single

in 0.770766986 seconds
in 0.821580789 seconds
in 9.093588456 seconds

bench-single
times in 1.633428630 seconds
times in 1.850602995 seconds

syscall: 25000000 x 256 times in 20.310248913 seconds

* Running on a Neoverse1, Linux 6.15, gcc 14.2.1, and glibc master

22

Throughput

e Larger buffers amortize the syscall
overhead

e And leverages the Chacha20 block
Linux crypto optimization
o chacha_4block xor neon

e This can be a room for improvement
o Check if the block Chacha20
NEON optimizations can be
used on vDSO

MB/s

linaro
Connect

== syscall == vDSO

400

300

200

100 200 300 400 500

Size (bytes)

* Running on a Neoverse1, Linux 6.15, gcc 14.2.1, and glibc master

23

[] I'
How to try it Comes
e Linux 6.11 for x86 or 6.12 for aarch64 and other architectures

o glibc241

e Hardware with NEON support.

24

https://lore.kernel.org/lkml/CAHk-=whVpSHw9+4ov=oLevfv8sPYbh59T_9VKif-6Vqkr41jQA@mail.gmail.com/
https://lore.kernel.org/all/CAHk-=wgtGkHshfvaAe_O2ntnFBH3EprNk1juieLmjcF2HBwBgQ@mail.gmail.com/
https://lists.gnu.org/archive/html/info-gnu/2025-01/msg00014.html

>

linaro
Connect Thank You!

208255

