
1

Fast and just as
random
getrandom() in userspace

2

1. Linux API history to obtain entropy
2. userland/glibc API to get entropy
3. Attempts to provide a CSRNG in

glibc/userland
4. The vDSO getrandom implementation

3

First on how kernel improved

4

Linux APIs
● Entropy is used in a lot of applications

○ BY the kernel itself on multiple places
○ On Cryptography for key generation and other places
○ For algorithm hardening, like Hash Tables initialization or heap hardening

● Having a good and fast CSRNG (Cryptographic Secure Random Number Generation)
allows multiple application to leverage it without reinventing the wheel
○ And also to avoid multiple pitfalls by reimplement it

● Provide a good entropy source is not easy

5

Current Linux APIs
● getrandom() - Linux 3.17

○ Added to overcome two main issues with random devices: file-descriptor exhaustion and
lack of procps access (i.e chroot and/or container).

○ Designed to use /dev/random entropy pool

● /dev/urandom
○ Dot not block
○ ‘Good enough’ entropy at the time of call

● Linux 5.5 change /dev/random to behave like getrandom()
○ It would only block untils it is initialized
○ Added GRND_INSECURE to avoid blocking, by provided ‘good enough’ entropy

6

Recent Linux developments
● Linux 5.17 added a mechanism for VM forks to reinitialize the CSRNG state

○ The idea is to avoid VM snapshots or duplications to have the same entropy pool state.

● Linux 5.17 as added a per-cpu CSRNG state with Fast Key Erasure
○ Improved multicore performance due lockless fast-path entropy pool access

● Linux 5.18 improved /dev/urandom initialization with ‘opportunistically’ heuristics
○ If architecture has fast cycle counters (rtdsc, cntfrq_el0, etc.) it will try try to make

/dev/urandom as good as /dev/random

● Linux 6.11 added the vDSO getrandom implementation
○ Initially for x86, but later for aarch64, loongarch, powerpc, and s390 on 6.12

7

glibc/userspace API to obtain entropy

8

● AT_RANDOM
○ Used internally to initialize stack guard (for -fstack-protector) and to pointer mangling
○ Very limited entropy (32 or 64 bit)

● getrandom() added on glibc 2.25
○ Cancellable syscall wrapper

● getentropy() added on glibc 2.25
○ From BSD system
○ Implemented using getrandom(), but non-cancellable
○ Limited entropy (maximum of 256 bytes per call)

9

● arc4random() on glibc 2.36
○ Also from BSD
○ Should not fail, and abort process if entropy can not be obtained
○ Current implemented on top of getentropy() with fallback to /dev/urandom

The arc4random stirred the discussion on how properly
provide a CSRNG in userland

10

Attempts to provide a CSRNG in
glibc/userland

11

● Florian Weimer proposed a AES-128 based arc4random for glibc 2.28
○ Per-thread CRNG state
○ Aimed to use crypto instructions like AES-NI and RDRAND
○ Complex fork detection to support multiple kernel version (with and without

MADV_WIPEONFORK).
○ Lockless and async-signal-safe.
○ Patch stalled without review

● I proposed a ChaCha20 based one for glibc 2.36
○ ChaCha20 is performance and lightweight stream cipher.
○ Simpler and limited fork-detection: either MADV_WIPEONFORK or an atfork handler
○ Based on OpenBSD implementation
○ Arch-specific block Chacha20 optimizations (aarch64, x86, powerpc, s390x)
○ After some iteration it was committed

Some history

12

● Just after inclusion Jason Donerfeld raised multiple concerns about the
implementation
○ How to properly reseed the crng state where only kernel has all the required information (on

VM fork, on system resume, from hibernation)?
○ The userland CRNG state might leak dependending on how VMs are configured.

● There were more discussion if arc4random should be designed as a CSRNG or not
○ Although documentation is not clear, user assume it is from BSD design

● The Chacha20 implementation was reverted in favor of one based on getrandom()

● And as so it was released, users complained that it was too slow (BZ 29437)

More history

https://sourceware.org/bugzilla/show_bug.cgi?id=29437

13

The vDSO getrandom() support

14

● User expects a CSRNG, otherwise they roll their own (and most likely not handling all
the corner cases)

● The userspace implementation should provide the same security guarantee as the
kernel

● It requires low-latency and good throughput
○ Otherwise the syscall is good enough

Requisites for a userland CRNG

15

● The kernel provides the algorithm and can signal the userland when to reseed
○ The userland code should not leak information
○ So it requires a arch-specific implementation

● The CSRNG state kept in userland requires some extra semantics
○ It should never be backed by swap
○ It can zero out anytime under memory pressure (the state can be recreated any time)
○ It should not be counted as mlocked
○ A new mmap flag (MAP_DROPPABLE)

● To allow a per-thread lockless implementation the userland requires some extra
management
○ A new glibc getrandom() implementation if vDSO is provided

The vDSO symbol provides all the guarantees

16

The kernel side

crng_reseed

/dev/random

_credit_init_bits

Mapped on each
process

Userland getrandom()

[vdso]

__vdso_u_rng_data

is_ready

generation

[vvar]

__kernel_getrandom

__cvdso_getrandom

__arch_chacha20_block_nostack

Kernel device driver

17

The kernel side
● The crypto driver is responsible to advertise when the crypto subsystem is ready

(is_ready) and when to reseed (generation) through the vvar (datapage)
○ It is mapped on each process and shared among all processes

● The vDSO generic implementation (__cvdso_getrandom) check if reseed is required
and call the getrandom syscall to if so

● If everything is ok, it call the arch-specific Chacha20 implementation
(__arch_chacha20_blocks_nostack) which generates entropy on userland state
○ It is a simplified Chacha20 implementation that does not leak any state on stack and work

only on multiple of cypher blocks.

18

Userland side

CRNG state

per-thread state

per-thread state

per-thread state

per-thread state

per-thread state

per-thread state

grnd_alloc

lock

per-thread state list

thread 1

getrandom_buf

thread 2

getrandom_buf

Allocated using MAP_DROPABLE

getrandom()

__kernel_getrandom

19

glibc implementation
● Kernel API

○ The kernel vDSO provides the required mmap flags and the opaque state size used.
○ Some extra care to align the opaque state to L1 data cache line size to avoid false-sharing.
○ The opaque state is used a per-thread CRNG state

● At glibc initialization
○ Query the vDSO for the mmap flags and opaque state params

● On getrandom()
○ Try to reserve a per-thread opaque state from the per thread list and update the TLS

pointer.
○ Reentrancy handling, fallback to syscall.
○ Call the vDSO with similar arguments as the syscall plus the opaque state
○ Release the per-thread opaque state

20

glibc challengers
● The data structures

○ The per thread list is simple block allocator organized as FIFO.
○ Neither the CRNG state nor the per thread list are deallocated or shrink during execution
○ The per thread list requires to be async-signal-safe, so it is based on mmap

● fork() handling: the per thread list needs to be in a consistent state on any case, even
though there is memory leak during fork

■ Extra care with memory fences on its internal update

21

Performance numbers

22

● The kernel has a benchmark to evaluate the vDSO improvements
○ tools/testing/selftests/vDSO/vdso_test_getrandom
○ It focus on small buffers (32-bits), which seems the most usual case

$./vdso_test_getrandom bench-single
 vdso: 25000000 times in 0.770766986 seconds
 libc: 25000000 times in 0.821580789 seconds
syscall: 25000000 times in 9.093588456 seconds

$./vdso_test_getrandom bench-single
 vdso: 25000000 x 256 times in 1.633428630 seconds
 libc: 25000000 x 256 times in 1.850602995 seconds
 syscall: 25000000 x 256 times in 20.310248913 seconds

Latency

* Running on a Neoverse1, Linux 6.15, gcc 14.2.1, and glibc master

23

Throughput

* Running on a Neoverse1, Linux 6.15, gcc 14.2.1, and glibc master

● Larger buffers amortize the syscall
overhead

● And leverages the Chacha20 block
Linux crypto optimization
○ chacha_4block_xor_neon

● This can be a room for improvement
○ Check if the block Chacha20

NEON optimizations can be
used on vDSO

24

How to try it
● Linux 6.11 for x86 or 6.12 for aarch64 and other architectures

● glibc 2.41

● Hardware with NEON support.

https://lore.kernel.org/lkml/CAHk-=whVpSHw9+4ov=oLevfv8sPYbh59T_9VKif-6Vqkr41jQA@mail.gmail.com/
https://lore.kernel.org/all/CAHk-=wgtGkHshfvaAe_O2ntnFBH3EprNk1juieLmjcF2HBwBgQ@mail.gmail.com/
https://lists.gnu.org/archive/html/info-gnu/2025-01/msg00014.html

25

Thank You!

