
1

Cuttlefish, Kernels,
and Bootloaders
Linaro Connect 2025
rammuthiah@google.com

mailto:rammuthiah@google.com

2

What is Cuttlefish
● Android Virtual Device used by kernel, systems, and BSP devs across the Android

Ecosystem to help develop pre-silicon hardware, kernel software, or test various
different android configurations

3

● Virtio compliant
○ GPU, SND, Input, Net, Wifi, Block, pmem
○ QEMU, CrosVM, QNX, OpenSynergy

● ADB, WebRTC, serial
● Used to test upstream Linux

○ Android Common Kernel’s CI/CD pipeline
● AArch64, x86_64, riscv64

○ Google Cloud, AWS, w/ or w/o GPU, ARM Bare Metal, Emulation
● Bootloader support (U-Boot)

○ UEFI compatibility
○ Bootconfig + AVB support
○ Fastboot

● CTS / VTS Coverage (~95% pass rate)

Why should you use it?

4

● Cloud Android’s launcher is moving as a whole to our github and being removed from
AOSP

○ Will take place over the next ~6 months
● The device implementation will be released on the AOSP schedule going forward (as

part of the quarterly Android release)
○ Please post any patches to AOSP, the team will review and post internally on your behalf

● Compatibility between the launcher and device will be maintained across all
supported releases (Android 12 is currently earliest supported)

aosp-main migration

http://github.com/google/android-cuttlefish

5

● Software Defined Vehicle development on Cuttlefish
● Enabling your own CI

○ Cuttlefish Orchestration (Host / Cloud)
● aosp-main Migration
● Docker Container Strategy (x86 / ARM)

Current Events

6

● Install our host packages
○ cuttlefish-base and cuttlefish-user - https://github.com/google/android-cuttlefish
○ Both x86_64 and arm64 Hosts are supported

■ Prebuilt debian packages can be found here
■ Also present in Debian Experimental thanks to Paul Liu

○ Docker Container
● For Orchestration (CI or local developer usage)

○ Cloud Android Orchestrator - https://github.com/google/cloud-android-orchestration

Getting Started

https://github.com/google/android-cuttlefish
https://artifacts.codelinaro.org/ui/native/linaro-372-googlelt-gigabyte-ampere-cuttlefish-installer/gigabyte-ampere-cuttlefish-installer/137733/
https://packages.debian.org/experimental/cuttlefish-common
https://github.com/google/cloud-android-orchestration

7

Android Build

$ mkdir android && cd android
$ repo init -u https://android.googlesource.com/platform/manifest -b main
$ repo sync -j
$ source build/envsetup.sh
$ lunch aosp_cf_x86_64_only_phone-trunk_staging-userdebug
$ m -j

$ mkdir kernel && cd kernel
$ repo init -u https://android.googlesource.com/kernel/manifest -b \
 common-android-mainline # or common-android16-6.12
$ repo sync -j
$ tools/bazel run //common:kernel_x86_64_dist
$ tools/bazel run //common-modules/virtual-device:virtual_device_x86_64_dist
$ tools/bazel run --config=gbl //bootable/libbootloader:gbl_efi_dist

Kernel + Modules + GBL Build

https://android.googlesource.com/platform/manifest
https://android.googlesource.com/kernel/manifest

8

Bootloader Build

$ mkdir u-boot && cd u-boot
$ repo init -u https://android.googlesource.com/kernel/manifest -b \
 u-boot-mainline
$ repo sync -j
$ tools/bazel run //u-boot:crosvm_x86_64

https://android.googlesource.com/kernel/manifest

9

$ cvd create -kernel_path /path/to/bzImage \
 -initramfs_path /path/to/kernel/module/ramdisk
$ adb shell
$ tail -f ~/cuttlefish_runtime/kernel.log // dmesg
> Go to https://127.0.0.1:8443/

Launch / Interact w/ the device

$ cvd create -bootloader /path/to/u-boot.rom \
 -pause_in_bootloader -console=true

Launch w/ Bootloader

$ cvd create -android_efi_loader \
 /path/to/gbl_x86_64_prod.efi

Launch w/ GBL

10

● EFI Boot by default
● Media Acceleration (Video Encode/Decode, Camera)
● aosp-main migration

What’s next

11

References
cloud-android-ext@google.com - Feature requests are welcome!
https://source.android.com/docs/setup/create/cuttlefish - for more information

mailto:cloud-android-ext@google.com
https://source.android.com/docs/setup/create/cuttlefish

12

Generic Android
Bootloaders
Linaro Connect 2025
rammuthiah@google.com

mailto:rammuthiah@google.com

13

What is a Bootloader?
● Single or multi stage firmware that

○ Initializes hardware
○ Loads (and verifies) the OS (kernel, rootfs) from the available boot devices
○ Collects all boot parameters (i.e. kernel commandline, device tree, bootconfig, ACPI, etc.)
○ Assembles these into memory
○ Jumps into the kernel

14

What is an Android Bootloader?
● A bootloader with some Android specific functions

○ Android Boot Image Parsing (boot, init_boot, vendor_boot, dtb, dtbo)
○ Fastboot
○ Android Verified Boot
○ Keymint integration
○ Protected Virtual Machine Firmware Loading
○ Etc.

● And device specific functions
○ TEE Support (Trustonic, QTEE, …)
○ Block Drivers (UFS, eMMC, SDCard)
○ Crypto
○ Graphics (Boot Splash, fastboot UX) & Buttons
○ Measured Boot
○ Hypervisors

https://source.android.com/docs/core/architecture/bootloader/
https://android.googlesource.com/platform/system/core/+/master/fastboot/
https://source.android.com/docs/security/features/verifiedboot
https://android.googlesource.com/platform/system/keymint/#bootloader
https://android.googlesource.com/platform/packages/modules/Virtualization/+/refs/heads/main/guest/pvmfw/README.md#android-bootloader-abl_support

15

Pain Points
● Duplication

○ fastboot, libavb, PVM FW Load, Boot image support are all re-implemented by each Android
manufacturer

● Updatability
○ Bootloader trees are forked with the device and stop receiving updates within a few years of

launch
● Annual Android boot flow modifications

○ PQC in the coming years
○ Boot Images over the last few years (Android 11 - 14)

■ Bootconfig (Android 12)
○ PVM FW Load (Android 15)

16

Existing Solutions
● Upstream Uboot

○ Android Things
● Coreboot
● UEFI

○ EFIDroid
● nmbl

17

Requirements
● Backwards compatibility
● Discoverable Calls
● Closed-Source bootloader support

18

● Widely used (EDK2, UBoot, LK)
○ Interface is stable, revisions are now released every ~10 years

● Discoverable Calls
● SystemReady
● Drivers (Protocols) are already defined for all common functionalities (i.e. block,

memory allocation, etc)

UEFI

19

Generic Bootloader (GBL)
● Annually released EFI boot application as part of the Android Release
● Security patches provided for lifetime of the Android release
● Supports all new Android boot requirements
● Developed in AOSP
● Technical details

○ no_std rust UEFI Application
○ arm64, x86_64, riscv_64 targets available
○ Libavb, boringssl, open-dice, libufdt, libfdt built in
○ Part of the Android Common kernel tree
○ Built w/ bazel
○ Cuttlefish + devboard support

20

GBL Protocols (Required)
● Block IO
● Hash IO
● RNG
● Memory Allocation
● Android specific

○ OS Configuration
○ AB Slot
○ Android Verified Boot

21

GBL Protocols (Recommended)
● Simple Text Input / Output
● Debug - next presentation :)
● Android specific

○ Image Loading
○ Fastboot USB
○ Fastboot
○ Android Virtualiztion Framework

22

Links + Documentation
● GBL Readme -

https://android.googlesource.com/platform/bootable/libbootloader/+/refs/heads/gb
l-mainline/gbl/

● GBL Docs -
https://android.googlesource.com/platform/bootable/libbootloader/+/refs/heads/gb
l-mainline/gbl/docs

● Email rammuthiah@google.com, paul.liu@linaro.org, android-gbl@google.com
● Source can be found at android-mainline and android16-6.12

https://android.googlesource.com/platform/bootable/libbootloader/+/refs/heads/gbl-mainline/gbl/
https://android.googlesource.com/platform/bootable/libbootloader/+/refs/heads/gbl-mainline/gbl/
https://android.googlesource.com/platform/bootable/libbootloader/+/refs/heads/gbl-mainline/gbl/docs
https://android.googlesource.com/platform/bootable/libbootloader/+/refs/heads/gbl-mainline/gbl/docs
mailto:rammuthiah@google.com
mailto:paul.liu@linaro.org
mailto:android-gbl@google.com
https://android.googlesource.com/kernel/superproject/+/refs/heads/common-android-mainline
https://android.googlesource.com/kernel/superproject/+/refs/heads/common-android16-6.12

23

What’s Next
● GBL for Android 16 release in June 2025
● Upstreaming of Android UEFI Protocols to EDK2, UBoot, and LK over next 2 quarters
● Continuing to flesh out LittleKernel UEFI support
● GBL Interface Freeze for Android 17 - October 2025
● GBL as a requirement for Android 17

24

Android Bootloader
Development & Debug
Linaro Connect 2025
paul.liu@linaro.org

mailto:paul.liu@linaro.org

25

Goal
● To enhance the developer debug experience with GBL

This will
● Enable partners to bring up GBL on their hardware more efficiently
● Make developers more productive when adding new features

26

Loading debug symbols
● In gdb, use command “add-symbol-file HelloWorld.debug <TextAddress> -s .data

<DataAddress>”
● TextAddress is the address of text section.
● DataAddress is the address of data section.
● The problem is how to get these address?
● EFI applications are load dynamically by EDK2 or U-boot.

27

TextAddress and DataAddress
● TextAddress = LoadAddress + Text section offset.
● DataAddress = LoadAddres + Data section offset.
● EFI applications are in PE format. So we can use readpe (or python pefile library) to

get the offset of the sections.
● The problem is how to get the LoadAddress.

28

LoadAddress - by debug log
● EDK2 will output debug log to I/O port 0x402 on x86.

○ “Loading driver at <LoadAddress> EntryPoint=<EntryAddress> HelloWorld.efi”
● U-boot will output debug log by enabling U-boot’s log command.

29

LoadAddress - by EFI Debug Support Table
● UEFI Spec. Section 18.4
● The LoadAddress is stored in EFI_LOADED_IMAGE_PROTOCOL table. If we can locate

this table. Then we can get the LoadAddress of the EFI application.
● So the first step is to locate the EFI System Table.

30

Locate the EFI System Table.
● An external debugger to determine

loaded image information in a
quiescent manner.

● The EFI system table can be located by
an off-target hardware debugger by
searching for the
EFI_SYSTEM_TABLE_POINTER structure.

● The structure is located on a 4M
boundary as close to the top physical
memory as feasible.

EFI_SYSTEM_TABLE_POINTER

Signature: UINT64
EfiSystemTableBase:
EFI_PHYSICAL_ADDRESS
Crc32: UINT32

31

EFI_DEBUG_IMAGE_INFO_TABLE
● We publish an EFI_CONFIGURATION_TABLE that leads to a database of pointers to all

instances of the loaded image protocol.

32

EFI_DEBUG_IMAGE_INFO_TABLE_HEADER

EFI_DEBUG_IMAGE_INFO_TABLE_HEADER

UpdateStatus: volatile UINT32
TableSize: UINT32
EfiDebugImageInfoTable:
EFI_DEBUG_IMAGE_INFO

EFI_DEBUG_IMAGE_INFO_NORMAL

ImageInfoType: UINT32
LoadedImageProtocolInstance:
EFI_LOADED_IMAGE_PROTOCOL
ImageHandle: EFI_HANDLE

33

Links
● Spec: https://uefi.org/specs/UEFI/2.10/18_Protocols_Debugger_Support.html
● gdb extension for locating SYSTEM_TABLE:

https://github.com/tianocore/edk2/commit/d985bd4b973327a3a79dfd258c17b256
d7fa1e7d

We will be demoing GBL and the debugger support at Demo Friday!

https://uefi.org/specs/UEFI/2.10/18_Protocols_Debugger_Support.html
https://github.com/tianocore/edk2/commit/d985bd4b973327a3a79dfd258c17b256d7fa1e7d
https://github.com/tianocore/edk2/commit/d985bd4b973327a3a79dfd258c17b256d7fa1e7d

34

Thank You!
Questions?

