%2 Cuttlefish, Kernels,
linaro and Bootloaders

Connect
2025 Linaro Connect 2025

mailto:rammuthiah@google.com

What is Cuttlefish linaro

e Android Virtual Device used by kernel, systems, and BSP devs across the Android
Ecosystem to help develop pre-silicon hardware, kernel software, or test various
different android configurations

D

Why should you use it? it

e Virtio compliant
o GPU, SND, Input, Net, Wifi, Block, pmem
o QEMU, CrosVM, QNX, OpenSynergy
e ADB, WebRTC, serial
e Used to test upstream Linux
o Android Common Kernel’s CI/CD pipeline
o AArché4,x86 64, riscvé4
o Google Cloud, AWS, w/ or w/o GPU, ARM Bare Metal, Emulation
e Bootloader support (U-Boot)
o UEFI compatibility

o Bootconfig + AVB support
o Fastboot

e CTS/ VTS Coverage (~95% pass rate)

D
aosp-main migration inore

e Cloud Android’s launcher is moving as a whole to our github and being removed from
AOSP

o Will take place over the next ~6 months
e The device implementation will be released on the AOSP schedule going forward (as
part of the quarterly Android release)
o Please post any patches to AOSP, the team will review and post internally on your behalf

e Compatibility between the launcher and device will be maintained across all
supported releases (Android 12 is currently earliest supported)

http://github.com/google/android-cuttlefish

Current Events linaro

e Software Defined Vehicle development on Cuttlefish

e Enabling your own Cli

o Cuttlefish Orchestration (Host / Cloud)
e ao0sp-main Migration
e Docker Container Strategy (x86 / ARM)

Getting Started inoro

e Install our host packages

o cuttlefish-base and cuttlefish-user - https:/github.com/google/android-cuttlefish

o Both x86_64 and armé4 Hosts are supported
m Prebuilt debian packages can be found here

m Also present in Debian Experimental thanks to Paul Liu
o Docker Container

e For Orchestration (Cl or local developer usage)
o Cloud Android Orchestrator - https://qgithub.com/google/cloud-android-orchestration

https://github.com/google/android-cuttlefish
https://artifacts.codelinaro.org/ui/native/linaro-372-googlelt-gigabyte-ampere-cuttlefish-installer/gigabyte-ampere-cuttlefish-installer/137733/
https://packages.debian.org/experimental/cuttlefish-common
https://github.com/google/cloud-android-orchestration

0
Android Build linaro

Connect

mkdir android && cd android

repo init -u https://android.googlesource.com/platform/manifest-b main
repo sync -j

source build/envsetup.sh

lunch aosp cf x86 64 only phone-trunk staging-userdebug
m =]

Kernel + Modules + GBL Build

mkdir kernel && cd kernel

repo init -u https://android.googlesource.com/kernel/manifest-b \
common-android-mainline # or common-androidl6-6.12
repo sync -j

tools/bazel run //common:kernel x86 64 dist

tools/bazel run //common-modules/virtual-device:virtual device x86 64 dist
tools/bazel run --config=gbl //bootable/libbootloader:gbl efi dist

https://android.googlesource.com/platform/manifest
https://android.googlesource.com/kernel/manifest

-
linaro

Bootloader Build Connect

mkdir u-boot && cd u-boot

repo init -u https://android.googlesource.com/kernel/manifest-b \

u-boot-mainline
repo sync —j

tools/bazel run //u-boot:crosvm x86 64

https://android.googlesource.com/kernel/manifest

Launch / Interact w/ the device

cvd create -kernel path /path/to/bzImage \
—initramfs path /path/to/kernel/module/ramdisk

adb shell
tail -f ~/cuttlefish runtime/kernel.log // dmesg
> Go to https://127.0.0.1:8443/

Launch w/ Bootloader

S cvd create -bootloader /path/to/u-boot.rom \
-pause in bootloader -console=true

Launch w/ GBL

S cvd create —android efi loader \
/path/to/gbl %86 64 prod.efi

Display 0 - 720x1280 (320 DPI)

What’s next oo
e EFI Boot by default

e Media Acceleration (Video Encode/Decode, Camera)
e Qosp-main migration

10

References linaro

cloud-android-ext@google.com - Feature requests are welcome!
https://source.android.com/docs/setup/create/cuttlefish - for more information

1

mailto:cloud-android-ext@google.com
https://source.android.com/docs/setup/create/cuttlefish

.GO Generic Android
linaro Bootloaders

Connect
2025 Linaro Connect 2025

mailto:rammuthiah@google.com

What is a Bootloader? linaro

e Single or multi stage firmware that

©)

@)
@)
(@)
@)

Initializes hardware

Loads (and verifies) the OS (kernel, rootfs) from the available boot devices

Collects all boot parameters (i.e. kernel commandline, device tree, bootconfig, ACPI, etc.)
Assembles these into memory

Jumps into the kernel

13

What is an Android Bootloader? linaro

e A bootloader with some Android specific functions

O O O O O

©)

Android Boot Image Parsing (boot, init_boot, vendor_boot, dtb, dtbo)
Fastboot

Android Verified Boot

Keymint integration

Protected Virtual Machine Firmware Loading

Etc.

e And device specific functions

©)

O 0O O O O

TEE Support (Trustonic, QTEE, ...)

Block Drivers (UFS, eMMC, SDCard)

Crypto

Graphics (Boot Splash, fastboot UX) & Buttons
Measured Boot

Hypervisors

14

https://source.android.com/docs/core/architecture/bootloader/
https://android.googlesource.com/platform/system/core/+/master/fastboot/
https://source.android.com/docs/security/features/verifiedboot
https://android.googlesource.com/platform/system/keymint/#bootloader
https://android.googlesource.com/platform/packages/modules/Virtualization/+/refs/heads/main/guest/pvmfw/README.md#android-bootloader-abl_support

0
Pain Points linaro

e Duplication
o fastboot, libavb, PVM FW Load, Boot image support are all re-implemented by each Android
manufacturer

e Updatability
o Bootloader trees are forked with the device and stop receiving updates within a few years of
launch
e Annual Android boot flow modifications

o PQC in the coming years

o Boot Images over the last few years (Android 11 - 14)
m Bootconfig (Android 12)

o PVM FW Load (Android 15)

15

Existing Solutions

Upstream Uboot

o Android Things
Coreboot

UEFI

o EFIDroid
nmbl

linaro
Connect

16

Requirements b

e Backwards compatibility
e Discoverable Calls
e Closed-Source bootloader support

17

o

U E F I linaro

Connect

Widely used (EDK2, UBoot, LK)

o Interface is stable, revisions are now released every ~10 years
Discoverable Calls

SystemReady

Drivers (Protocols) are already defined for all common functionalities (i.e. block,
memory allocation, etc)

18

9

Generic Bootloader (GBL) finaro

Annually released EFI boot application as part of the Android Release
Security patches provided for lifetime of the Android release
Supports all new Android boot requirements

Developed in AOSP

Technical details

O

O O O O O

no_std rust UEFI Application

armé4, x86_64, riscv_64 targets available

Libavb, boringssl, open-dice, libufdt, libfdt built in
Part of the Android Common kernel tree

Built w/ bazel

Cuttlefish + devboard support

19

GBL Protocols (Required) finaro

Block 10

Hash IO

RNG

Memory Allocation

Android specific
o OS Configuration
o ABSlot
o Android Verified Boot

20

GBL Protocols (Recommended) enors

e Simple Text Input / Output
e Debug - next presentation :)

e Android specific

o Image Loading

o Fastboot USB

o Fastboot

o Android Virtualiztion Framework

21

Links + Documentation linaro

e GBL Readme -
https://android.googlesource.com/platform/bootable/libbootloader/+/refs/heads/gb
l-mainline/gbl/

e GBL Docs -
https://android.googlesource.com/platform/bootable/libbootloader/+/refs/heads/agb
l-mainline/gbl/docs

e Email rammuthiah@google.com, paul.liu@linaro.org, android-gbl@google.com
Source can be found at android-mainline and android16-6.12

22

https://android.googlesource.com/platform/bootable/libbootloader/+/refs/heads/gbl-mainline/gbl/
https://android.googlesource.com/platform/bootable/libbootloader/+/refs/heads/gbl-mainline/gbl/
https://android.googlesource.com/platform/bootable/libbootloader/+/refs/heads/gbl-mainline/gbl/docs
https://android.googlesource.com/platform/bootable/libbootloader/+/refs/heads/gbl-mainline/gbl/docs
mailto:rammuthiah@google.com
mailto:paul.liu@linaro.org
mailto:android-gbl@google.com
https://android.googlesource.com/kernel/superproject/+/refs/heads/common-android-mainline
https://android.googlesource.com/kernel/superproject/+/refs/heads/common-android16-6.12

o

What’s Next linaro

GBL for Android 16 release in June 2025

Upstreaming of Android UEFI Protocols to EDK2, UBoot, and LK over next 2 quarters
Continuing to flesh out LittleKernel UEFI support

GBL Interface Freeze for Android 17 - October 2025

GBL as a requirement for Android 17

23

% Android Bootloader
linaro Development & Debug

Connect
2025 Linaro Connect 2025

mailto:paul.liu@linaro.org

0
Goal linaro

e To enhance the developer debug experience with GBL

This will

e Enable partners to bring up GBL on their hardware more efficiently
e Make developers more productive when adding new features

25

0
linaro

Loading debug symbols

In gdb, use command “add-symbol-file HelloWorld.debug <TextAddress> -s .data
<DataAddress>”

TextAddress is the address of text section.

DataAddress is the address of data section.

The problem is how to get these address?

EFI applications are load dynamically by EDK2 or U-boot.

26

TextAddress and DataAddress linaro

TextAddress = LoadAddress + Text section offset.
DataAddress = LoadAddres + Data section offset.

EFI applications are in PE format. So we can use readpe (or python pefile library) to
get the offset of the sections.

e The problem is how to get the LoadAddress.

27

LoadAddress - by debug log e

e EDK2 will output debug log to I/O port 0x402 on x86.
o “Loading driver at <LoadAddress> EntryPoint=<EntryAddress> HelloWorld.efi”

e U-boot will output debug log by enabling U-boot’s log command.

28

e
linaro

LoadAddress - by EFlI Debug Support Table

UEFI Spec. Section 18.4
The LoadAddress is stored in EFI_LOADED IMAGE_PROTOCOL table. If we can locate

this table. Then we can get the LoadAddress of the EFI application.
e So the first step is to locate the EFI System Table.

29

D

Locate the EFI System Table. inoro

An external debugger to determine
loaded image information in a
quiescent manner.

The EFI system table can be located by
an off-target hardware debugger by
searching for the
EFI_SYSTEM_TABLE_POINTER structure.
The structure is located on a 4M
boundary as close to the top physical
memory as feasible.

EFl_SYSTEM_TABLE_POINTER

Signature: UINT64
EfiSystemTableBase:
EFI_PHYSICAL_ADDRESS
Crc32: UINT32

30

EFI_DEBUG_IMAGE_INFO_TABLE

e We publish an EFI_CONFIGURATION_TABLE that leads to a database of pointers to all
instances of the loaded image protocol.

EFI_SYSTEM_TABLE_POINTER

(EfiStystem Table)

b

linaro
Connect

L-»-
EFI_SYSTEM_TABLE EFI_CONFIGURATION_TABLE
(Configuration Table) (EfiDebug Imagelnfo Table Pointer)

:

EFI_DEBUG_IMAGE_INFO_TABLE_HEADER

(EfiDebug Imagelnfo Table)

EFI_DEBUG_IMAGE_INFO_TABLE
(EfiDebug Imagelnfo [n])

EFI_DEBUG_IMAGE_INFO_NORMAL

(LoadedImageProtocollnstance)

/ EFI_LOADED_IMAGE_PROTOCOL

31

o

EFI_DEBUG_IMAGE_INFO_TABLE_HEADER Connee

EFl_DEBUG_IMAGE_INFO_TABLE_HEADER

UpdateStatus: volatile UINT32
TableSize: UINT32
EfiDebugimagelnfoTable:
EFI_DEBUG_IMAGE_INFO

EFI_DEBUG_IMAGE_INFO_NORMAL

ImagelnfoType: UINT32
LoadedImageProtocollnstance:
EFI_LOADED_IMAGE_PROTOCOL
ImageHandle: EFI_HANDLE

32

Links linaro

Spec: https://uefi.ora/specs/UEFI/2.10/18 Protocols Debugger Support.html

gdb extension for locating SYSTEM_TABLE:
https://aithub.com/tianocore/edk2/commit/d985bd4b973327a3a79dfd258¢c17b256
d7fale7d

We will be demoing GBL and the debugger support at Demo Friday!

33

https://uefi.org/specs/UEFI/2.10/18_Protocols_Debugger_Support.html
https://github.com/tianocore/edk2/commit/d985bd4b973327a3a79dfd258c17b256d7fa1e7d
https://github.com/tianocore/edk2/commit/d985bd4b973327a3a79dfd258c17b256d7fa1e7d

oo
Freyes Thank You!

Connect Questions?

208255

