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● EL0 app support is a mechanism to 
Deprivilege parts of RMM by running them 
at EL0 (using Virtual Host Extension)

○ RMM functionality sandboxed as a EL0 
Application. 

○ Isolated address space for EL0 execution

● Build and binary isolation with ability to 
build shared components specific to EL0 
App needs.

○ Can share or build separate obj files for 
shared source files.

○ Separate Linker script and separate binary 
for apps.

RME CCA software flow
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RMM with EL0 apps

● A given App can have several 
“instances”.

○ Conceptually like threads in a 
process

○ Every instance receives its own stack 
and heap which is private to the 
instance.

■ In addition, every instance has its
own shared buffer, Xlat table etc.

○ The memory for instance can be
allocated from per-cpu buffer in 
RMM, Auxiliary granule storage from 
REC (Realm Execution Context) or 
PDEV (Physical Device Object).
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Build packaging
● Apps are built as separate elf files
● A python script is used to

○ Extract the binary content of the relevant sections
■ .text, .rodata, .data

○ Prepend a header to the extracted sections
● Elf sections must be page aligned, so that direct mapping .text, .rodata in the app 

memory is possible
● Header format is defined in RMM source as a C structure, the python script needs to 

be kept up-to-date on header format change
○ Header contains a header version, elf section offsets and lengths, stack/heap page count, 

app name and app id

Note : When executing the fake_host binary, the rmm_core and el0 app 

binaries must be specified.
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● The EL0 App runs in High VA space

○ The High VA is private to each CPU.

● Every app is assigned a unique ID 
which is used as its ASID

○ All instances of the app have the same 
ASID.

● Every app instance has its own 
Translation Table, Register context, 
Stack, Heap and a Shared buffer (4KB).

○ The shared buffer and Heap can be
used for communicating between EL0 
app and RMM core.
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Security Model
● Focus on RMM security

○ designed to enhance the security of RMM by sandboxing sensitive data and complex 
functionality from the rest of the RMM address space.

○ By moving sensitive data to EL0 app framework can help reduce certain CPU vulnerabilities, such 
as those related to speculative execution, from leaking information. 

RMM core EL0 -App
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RMM with Apps
● Some problems solved with App framework

○ MbedTLS sharing issues
■ API/version mismatches and SIMD enablement problem.

○ The surface exposure of RMM Core to Non-Secure world is much reduced during SPDM 
interaction with Devices.

○ Allows NS yield for SPDM comms flow.
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Drawbacks /  known issues
● Debugging issues

○ RMM core offset need to taken into consideration when loading symbol info into Debugger.
○ Every App runs in the same High Address space

■ Breakpoints in the EL0 address space may match several apps.

○ Use ASID field in TTBR1_EL2 during Debugging to work out the current running App.
● Entering an EL0 app and exiting has a cost for performance

○ The usecases where this is enabled is not considered performance critical.
● The Auxiliary granules attached to REC and PDEV objects are mapped to RMM code 

at runtime currently
○ We can map and unmap on demand when APP is entered but since we are not able to 

measure impact on performance, we haven’t done this yet.
● The BSS for apps are allocated from RMM BSS. This will be rectified once RMM can 

allocate memory from Realm carveout at boot time.
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Fuzz test

Utest

Future Direction
● Enable Unit testing / Fuzz testing of EL0 Apps
● Would also enable performance measurement 

at app level.
○ Decide on SIMD/SVE enablement in apps.

● Enable more optimizations and security 
hardening of App framework
○ Enable Arch security features (DIT, SSBS)

● Enable NS interrupt pre-emption for 
applicable use-cases.

● Enable crash recovery of apps
● Live firmware Activation (hitless update) state 

migration or State re-initialization as needed 
for the specific EL0 app.
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Fake host EL0 app framework
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Thank You!
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