
1

RMM Deprivileging
using VHE
RMM EL0 app framework

Soby Mathew

TF-RMM Tech Lead

2

Introduction

EL3

Hypervisor

VM0 VM1

RMM

R-

VM0

R-

VM1

● EL0 app support is a mechanism to
Deprivilege parts of RMM by running them
at EL0 (using Virtual Host Extension)

○ RMM functionality sandboxed as a EL0
Application.

○ Isolated address space for EL0 execution

● Build and binary isolation with ability to
build shared components specific to EL0
App needs.

○ Can share or build separate obj files for
shared source files.

○ Separate Linker script and separate binary
for apps.

RME CCA software flow

3

Introduction

RMM

R-

VM0

R-

VM1

App 0 App 1

App svc layer

App 0

stub

App 1

stub

RMM with EL0 apps

● A given App can have several
“instances”.

○ Conceptually like threads in a
process

○ Every instance receives its own stack
and heap which is private to the
instance.

■ In addition, every instance has its
own shared buffer, Xlat table etc.

○ The memory for instance can be
allocated from per-cpu buffer in
RMM, Auxiliary granule storage from
REC (Realm Execution Context) or
PDEV (Physical Device Object).

4

5

Build packaging
● Apps are built as separate elf files
● A python script is used to

○ Extract the binary content of the relevant sections
■ .text, .rodata, .data

○ Prepend a header to the extracted sections
● Elf sections must be page aligned, so that direct mapping .text, .rodata in the app

memory is possible
● Header format is defined in RMM source as a C structure, the python script needs to

be kept up-to-date on header format change
○ Header contains a header version, elf section offsets and lengths, stack/heap page count,

app name and app id

Note : When executing the fake_host binary, the rmm_core and el0 app

binaries must be specified.

6

Memory layout Slot buffer

RMM per

cpu stack

RMM EH

stack

0xffffffffffe00000

0xfffffffffffffffff

RMM EL3

shared Buffer

RMM_DATA/

BSS

RMM

Code/RO

App

headers/bins

APP Stack

APP Heap

APP shared

APP BSS

APP DATA

APP

Code/RO

0xffffffffffe00000

High VA
(TTBR1_EL2)

Low VA
(TTBR0_EL2)

RMM Core (EL2)

RMM App (EL0)

● The EL0 App runs in High VA space

○ The High VA is private to each CPU.

● Every app is assigned a unique ID
which is used as its ASID

○ All instances of the app have the same
ASID.

● Every app instance has its own
Translation Table, Register context,
Stack, Heap and a Shared buffer (4KB).

○ The shared buffer and Heap can be
used for communicating between EL0
app and RMM core.

7

Security Model
● Focus on RMM security

○ designed to enhance the security of RMM by sandboxing sensitive data and complex
functionality from the rest of the RMM address space.

○ By moving sensitive data to EL0 app framework can help reduce certain CPU vulnerabilities, such
as those related to speculative execution, from leaking information.

RMM core EL0 -App

8

RMM with Apps
● Some problems solved with App framework

○ MbedTLS sharing issues
■ API/version mismatches and SIMD enablement problem.

○ The surface exposure of RMM Core to Non-Secure world is much reduced during SPDM
interaction with Devices.

○ Allows NS yield for SPDM comms flow.

RMM

PRNG Dev assignment

libspdm

mbedTLS

Attestation

t_cose

qcbor

Attestation

t_cose

qcbor

mbedTLS

RMM

PRNG

mbedTLS

Before EL0 app framework After EL0 app framework

RAK

spdm key

IDE key

Dev assignment

libspdm

mbedTLS

spdm key

IDE key RAK

9

Drawbacks / known issues
● Debugging issues

○ RMM core offset need to taken into consideration when loading symbol info into Debugger.
○ Every App runs in the same High Address space

■ Breakpoints in the EL0 address space may match several apps.

○ Use ASID field in TTBR1_EL2 during Debugging to work out the current running App.
● Entering an EL0 app and exiting has a cost for performance

○ The usecases where this is enabled is not considered performance critical.
● The Auxiliary granules attached to REC and PDEV objects are mapped to RMM code

at runtime currently
○ We can map and unmap on demand when APP is entered but since we are not able to

measure impact on performance, we haven’t done this yet.
● The BSS for apps are allocated from RMM BSS. This will be rectified once RMM can

allocate memory from Realm carveout at boot time.

10

Fuzz test

Utest

Future Direction
● Enable Unit testing / Fuzz testing of EL0 Apps
● Would also enable performance measurement

at app level.
○ Decide on SIMD/SVE enablement in apps.

● Enable more optimizations and security
hardening of App framework
○ Enable Arch security features (DIT, SSBS)

● Enable NS interrupt pre-emption for
applicable use-cases.

● Enable crash recovery of apps
● Live firmware Activation (hitless update) state

migration or State re-initialization as needed
for the specific EL0 app.

Dev assignment

libspdm

mbedTLS

spdm key

IDE key

Dev assignment

libspdm

mbedTLS

spdm key

IDE key

11

Fake host EL0 app framework

12

Thank You!

	Slide 1: RMM Deprivileging using VHE
	Slide 2: Introduction
	Slide 3: Introduction
	Slide 4
	Slide 5: Build packaging
	Slide 6: Memory layout
	Slide 7: Security Model
	Slide 8: RMM with Apps
	Slide 9: Drawbacks / known issues
	Slide 10: Future Direction
	Slide 11: Fake host EL0 app framework
	Slide 12: Thank You!

