
1

Compute eXpress Link
Status and what’s next?

Jonathan Cameron | Huawei

2

Outline
● Brief introduction to CXL

● Memory Expansion

● Architecture specific corners

● Memory Pooling

● Memory Sharing

● What is next?

Notes

● I will go fast.

● I’d rather stop to have a useful discussion than cover all the material.

● Corridor track also available!

3

● Interconnect Standard (CXL consortium)

● Closely related to and built on top of PCI
Express (gets quicker when PCIe does)

● Enables 3 key things:

○ Low(ish) latency memory access. Main
focus of today!

○ Coherent caching of Host Memory by
devices.

○ Coherent caching of Device memory by
hosts.

● CXL Fabrics (3.0+) enable large scale
fabrics. No public enablement yet.

What is CXL?
SoC A SoC B

CXL

MEM

CXL

MEM

CXL

ACCEL

CXL

ACCEL

SoC A SoC B

CXL

MEM

CXL

MEM

CXL

ACCEL

CXL

ACCEL

CXL

ACCEL

SWITCH SWITCH

CXL

MEM

SoC A SoC B

CXL Multi-Head Memory Device

SoC A SoC B

SoC A SoC B

CXL Multi Logical

Device

SoC A SoC B

Complex Switch

CXL Multi Logical

Device

1 server,

direct connect

(capacity / bandwidth)

1 server,

mixed connect

(capacity P2P)

Multi server,

Switch + MLDs

(Pooling)

Multi server,

Multi-Head

(low latency pool)(Eye Candy!)

4

Key software
Kernel CXL subsystem
● Healthy multi-vendor community
● Overlaps other subsystems (mm, perf,

EDAC)
● Monthly sync call (ask for details)
● LPC uconf.
● linux-cxl@vger.kernel.org

QEMU emulation
● Key platform for ecosystem

development.
● Ahead of hardware and kernel.
● Upstream + staging tree on gitlab.
● Arm64 support under review!

Firmware
● Some approaches to CXL are firmware

heavy – most early deployments use
this.

● Some support proposed for EDK2
/qemu-sbsa.

Fabric Management
● CXL provisioning and management is

moderately complex.
● Various projects announced, but not

clarity yet on which will succeed.
● Challenges in getting test platform.

mailto:linux-cxl@vger.kernel.org

5

Memory Expansion
Current Generation hardware

● Expansion of conventional NUMA

● Direct connect for best latency

● (switches enable high fan out)

● Common use cases:

○ Bandwidth Expansion (weighted interleave)

○ Capacity Expansion

○ Technology mixing

● Present at boot / hotpluggable

● Advanced RAS!

● Tiering assistance – Hotness Tracking!

SoC A SoC B

CXL CXL

DDR5 DDR5

DDR5 DDR5

SoC A SoC B

CXL CXL

DDR5 DDR5

DDR4 DDR4

6

RAS in a CXL world
Making kernel RAS developers dreams come true!
● OS first control of features. Enabling sophisticated policy decisions.
● FW may not even know devices are there.
● Standardization – some adoption of interfaces for other devices (OCP).

Some examples:
● Rich error reporting, event threshold control etc.
● Memory Scrub control (differentiated reliability!)
● Memory repair (PPR / sparing)

Core RAS features support added to EDAC subsystem. Drivers under review.
● Sysfs driven, policy in RASDaemon etc.

Lots of other RAS challenges from CXL to solve (Isolation / recovery etc)

7

Architecture specific elements

8

Arch Corners…
NUMA description for hotplug
● Normal ACPI memory hotplug provides

NUMA node as part of event…
● CXL native hotplug does not.
● CXL hotplug relies on CEDT table*
● On x86 NUMA information was

retained, not on other architectures.
● Now numa-memblk generalized so

everyone can use it
○ Not an arch problem any more!
○ (thanks to Mike Rapoport)

● Simplistic mapping. Will need a revisit
in the long term.

* and SRAT Generic Ports + discoverable topology description

Cache flushing by physical address.
● Why (see next slide)
● X86 has a global cache flush that

works (slowly).
● ARM64 has no such instruction.
● System problem – need a generalized

solution!

9

Why do we need a cache flush by PA?

Host PA Map

Device PA Map

Cache

Simple case – we switched the memory.

Host PA Map

Device PA Map

Cache

Time A: Demand fetch, decoder config A Time B: Demand fetch, decoder config B

Oops, stale content!

10

Why do we need a cache flush by PA?

Host PA Map

Device PA Map

Cache

Complex case – we switched the memory and prefetch occurred!.

Host PA Map

Device PA Map

Cache

Time A: Prefetch, decoder not configured!

0

Time B: Fetch, decoder configured but zeros in cache!

0

Oops, hallucinated contents!

No mapping, read 0!

11

Cache management subsystem
Requirements:
● Support various implementations of

flush by PA.
● Disaggregated components /

interleave.

Minimal Solution
● ‘Device class like’ registration

framework.
● Register with arch call back (check

name).

Enhancements:
● Flush only the PA range that needs to

be (add range flush)
● Trade off full flush (disruptive) vs range

flush (may be slow!)

● Driver per implementation?
○ No standards yet…

● Option of an ACPI ‘device’.
○ Example based on (currently dropped)

PSCI interface proposal.
○ Worth perusing?

12

Back to architecture independent

13

Memory Pooling
Next generation hardware

● Solution to ‘stranded memory’ / VM
packing challenges.

● Unified pool of memory accessible to
small number of servers (< 32)

● Multiheaded Devices (low latency)

● Dynamic allocations to medium term
activities (VM, specific applications –
e.g. DB, AI).

● Kernel stack available, but not
merged.

CXL Multi-Head Memory Device

SoC A SoC B

SoC A SoC B SoC A SoC B

SoC A SoC B

DDR5 DDR5 DDR5 DDR5

DDR5 DDR5 DDR5 DDR5

DDR5 DDR5 DDR5 DDR5 DDR5

DDR5 DDR5 DDR5 DDR5 DDR5

8 head pool – dual host connections

14

Memory Pooling – Challenges
Challenges:
● New management concepts – wire up to cloud orchestrator.
● Memory for 1 purpose – once done, give it back!
● Is DAX the way to go?
● How to work with CoCo?
● Application specific memory virtualization.

○ CXL emulation?
○ Virt-IO solution?

15

Memory sharing
Why?
● Data duplication / sharding.

○ RocksDB / Apache Arrow etc.
○ Read only (or mostly)

● Low latency data transfer.
● Zero copy live migration?

○ Pipe dream or real? (long way to go!)

How to use it?
● Consistent presentation / DAX?
● File abstractions / FAMFS.
● Stack specific memory

Software managed coherency
● If only coherency was cheap.

○ Extra bus transactions needed.
○ Tracking hardware on device.

● Seems it isn’t…
● Need to handle lack of coherency

between hosts.
○ Clean write backs! (who would do

that?)
○ How does an application flush writes?

16

More… architecture specific elements

17

Application driven interhost cache flushing?
Why?
● Producer / consumer model
● Synchronization out of band (so ignore

that)
● What does Point of Coherence mean in

a multihost system?
● Do we need a Point of Deep

Coherence? ☺

Simple solutions (maybe?)
● For memory in a CXL fixed memory

window (PA range) PoC is in remote
memory. Works, but…

● Temporal sharing. May only be visible
to this host for now – so why flush to
remote memory?

● Need to distinguish shareable types:
○ Shared
○ May be shared later but needs explicit

flush before that!

18

Wrap up. I’m probably out of time…

19

Getting involved…
Scratch your own itch.
● What applications do you care about?
● Can we test them on QEMU?

○ Emulation is pretty easy to do!
● Can we map them to available

hardware?

There are pitfalls that can be avoided…
● Implementations out there don’t

always do what Linux expects…
○ Low memory hole,
○ SPA concept on AMD,
○ Hardware local DDR / CXL interleave.

Big gaps…
● Firmware.

○ We don’t need to do the FW first flows,
but without them testing is limited.

● Full open source fabric management
stacks for pooling.
○ Redfish,
○ OpenBMC,
○ Generic cloud orchestrator

interactions.

20

Thank You!

