
1

Optimizing Edge AI
with ExecuTorch and
Arm® Ethos NPU
Erik Lundell 16-05-2025
Arm

2

PyTorch and ExecuTorch
● Open-source Machine Learning

framework by Meta.

● “The debuggable, hackable and
flexible framework”

● 81 sub-repositories, 3500
contributors in 2024.

● ExecuTorch is one of them:
o Alpha October 2023 – Proof of concept Ethos-U

support included.

o Currently Beta, v0.6 – Much improved Ethos-U
support.

o Full release scheduled October 2025 – Aiming for
full Ethos-U support.

3

Why ExecuTorch?
● ExecuTorch is PyTorch's complete solution

for deploying AI on edge.

○ No python required at runtime, even
bare-metal is supported.

● A solution to a fragmented ecosystem.

● Use the same framework for a multitude of
platforms from high-end phones to micro
controllers.

● While still getting optimized performance
for each platform.

4

● Low-power NPU for IoT use cases.

● Three generations: Ethos-U55, Ethos-U65,
and Ethos-U85.

● Flexible CPU-integration.

● Latest gen. offers up to 2048 MACs,
4 TOPs@1GHz.

● Capable of running full networks.

Ethos-U Overview
Ethos-U85

Configurable
MAC Engine

Weight decoder

DMA

Local Memory

Control
Unit

Elementwise
engine

5

So, let's deploy a PyTorch model on edge
Goal:

• Execute inferences on an embedded platform.

• Accelerate the workload using Ethos-U.

• Simulate execution to ease development.

6

Ahead of Time flow
Produces a PTE file with one or more “delegate” sections, targeting specific
hardware.

1. Export
3. Partition

and lower for

Ethos-U

Python class Quantized graph IR

PyTorch Model PTE file2. Quantize

Graph IR Serialization

7

1. Exporting the model
● ExecuTorch utilizes PyTorch's export technology.
● Traces a complete graph Ahead of Time.
● Produces an Intermediate Representation (IR) graph in the ATen dialect.

graph_module = export(model, example_inputs)

8

2. Quantizing the model
● The traced graph can be quantized automatically by PyTorch's export

quantization.
● Necessary to execute on the integer-based Ethos-U.
● The EthosUQuantizer ensures proper quantization for the target hardware,

while maintaining flexibility.

quantizer = EthosUQuantizer(compile_spec)

graph_module = prepare_pt2e(graph_module, quantizer)

graph_module(*example_inputs)

graph_module = convert_pt2e(graph_module)

9

3. Lowering to ExecuTorch program
● Massage our IR graph to an artifact to be consumed by the runtime.

● Partition the IR graph for different backends.
○ CPU/GPU/NPU.

● Compile partitions, creating delegates.

● … other tasks needed to prepare execution.

to_edge_transform_and_lower(

model,

[ethos_u_partitioner],

compile_config

).to_executorch(executorch_config)

10

3a. Partitioning

https://PyTorch.org/ExecuTorch/stable/compiler-delegate-and-partitioner.html

PTE file

to_edge_transform_and_lower(

model,

[ethos_u_partitioner],

compile_config

).to_executorch(executorch_config)

● The partitioner selects parts of the IR graph to be consumed by a backend.
● EthosUPartitioner partitions everything

that is supported unless explicitly specified.
● Possible to have many partitions

of each backend, and many backends.

11

3b. Compiling
● Done per partition.
● The backend first lowers the IR to TOSA IR.
● It then compiles the TOSA IR to produce

a command stream for Ethos-U.
● The command stream is baked into the PTE file.

https://PyTorch.org/ExecuTorch/stable/compiler-delegate-and-partitioner.html

PTE file

to_edge_transform_and_lower(

model,

[ethos_u_partitioner],

compile_config

).to_executorch(executorch_config)

12

Runtime flow
Consumes the PTE file, executing operators or delegating sections.

4. Runtime ArmBackendEthosU

Consumed by Calls

PTE file

Ethos-U
Hardware

Executes on Simulator

13

4. Running on bare metal
● A custom application uses the Executorch runtime, ~50kB.
● The runtime handles calling operator kernels and delegate backends.
● Example application in examples/arm/arm_executor_runner.cpp.

○ Reads a PTE file and input, runs a single inference, writes output.

14

5. Simulating an embedded system
● Arm provides simulators (Fixed Virtual Platforms, FVPs) of

the Arm® Corstone reference systems.
● We have integrated the freely available:

○ Corstone-300 FVP: includes Arm® Cortex®-M55 and Ethos-U55.
○ Corstone-320 FVP: includes Arm® Cortex®-M85 and Ethos-U85.

● Check functionality and get a rudimentary performance estimate.
● Easy to use with the utility script backends/arm/scripts/run_fvp.sh

15

Try it out!
• It is ready today, with examples.
• We are happy to receive feedback and issues being raised

• Tag Github issues with partner:arm
• There is an ExecuTorch discord with a channel #arm-ethos-u

• Install ExecuTorch
• https://pytorch.org/executorch/stable/getting-started-setup.html

• https://pytorch.org/executorch/stable/executorch-arm-delegate-tutorial.html

• Learn more:
• https://learn.arm.com/learning-paths/embedded-and-

microcontrollers/introduction-to-tinyml-on-arm/
• https://github.com/PyTorch/ExecuTorch/tree/main/backends/arm/

https://pytorch.org/executorch/stable/getting-started-setup.html
https://pytorch.org/executorch/stable/executorch-arm-delegate-tutorial.html
https://learn.arm.com/learning-paths/embedded-and-microcontrollers/introduction-to-tinyml-on-arm/
https://learn.arm.com/learning-paths/embedded-and-microcontrollers/introduction-to-tinyml-on-arm/
https://github.com/PyTorch/ExecuTorch/tree/main/backends/arm/

16

Thank You!

17

Tensor Operator Set Architecture (TOSA)
● Arm developed standard set of approx.

70 operators commonly used in ML
models.

● Profiles and extensions provide
flexibility.

● Software and hardware agnostic.
● Representation agnostic.
● But with a toolchain.

Framework X PyTorch

Target Y Ethos-U

Ethos-U-Vela

ExecuTorch

	Slide 1: Optimizing Edge AI with ExecuTorch and Arm® Ethos™ NPU
	Slide 2: PyTorch and ExecuTorch
	Slide 3: Why ExecuTorch?
	Slide 4: Ethos-U Overview
	Slide 5: So, let's deploy a PyTorch model on edge
	Slide 6: Ahead of Time flow
	Slide 7: Exporting the model
	Slide 8: 2. Quantizing the model
	Slide 9: 3. Lowering to ExecuTorch program
	Slide 10: 3a. Partitioning
	Slide 11: 3b. Compiling
	Slide 12: Runtime flow
	Slide 13: 4. Running on bare metal
	Slide 14: 5. Simulating an embedded system
	Slide 15: Try it out!
	Slide 16: Thank You!
	Slide 17: Tensor Operator Set Architecture (TOSA)

