
1

Xen Hypervisor:
Progress on safety certifiability

Stefano Stabellini & Edgar E. Iglesias

May 15th, 2025

2

XEN: OPEN SOURCE COMMUNITY

 Xen Project is an Open Source project under the
Linux Foundation
‒ Well known and widely used in the industry

‒ Extremely strong review process and security process
‒ Reference Open Source hypervisor for Embedded and Automotive

 x86 and ARM supported

 RISC-V in progress by ResilTech, Vates, Microchip and RT-RK

 The Xen Community is a diverse multi-vendor community
‒ Maintainers from Amazon, ARM, Citrix, AMD, SuSE, and more
‒ Independent panel of experts

 AMD joined Xen Project as a member in 2022
‒ AMD is the second contribution to Xen Project!

 Honda joined Xen Project in Dec 2024!
‒ Ford and Daimler Truck joining the Xen development community

Citrix
43%

AMD
22%

SUSE
16%

Individuals
9%

ARM
3%

Vates
2%

EPAM
2%

InvisibleThingsLab
1%

NXP
1%

Ford
1%

Amazon
0%

RaptorEngineering
0%

Eurecom
0%

TI
0%

Linaro
0%

XEN 4.20 CONTRIBUTIONS

3 GEM0GEM0

MODERN XEN ARCHITECTURE, ARMV8 (AND RISC-V)

Xen

DomU
• Unprivileged
• Device drivers for assigned devices
• Can run PV frontends and backends

CPU#0 CPU#1 CPU#2 CPU#3

Dom0
• Privileged
• Device drivers (all devices by default)
• “xl toolstack” to create additional VMs
• Can run PV frontends and backends

ETH controller
SATA

Controller

CPU#4 CPU#5 CPU#6 CPU#7

Driver SATA Driver

• Xen runs alone at EL2, uses HW virtualization

• Xen only owns the key HW components:
• CPUs, Generic Timers, GIC, MMU
• If present: SMMU, PCI RC

• Devices are directly assigned to Domains
• By default, to Dom0 (if present)
• Fully configurable

• ARM Xen Domains
• No need for QEMU for emulation
• No need for ”PV guests”

• Dom0less
• Dom0 becomes optional

• Devices can be shared with a PV
frontend/backend architecture

• Both Xen PV drivers and VirtIO
• Multiple device sharing models

supported

E
L2

 E

L1

 E
L0

Timers
Interrupt
Controller

MMU IOMMU PCI RC
CPU &
Schedulers

VirtIO-net / PV
backend VirtIO/PV frontend

4 GEM0GEM0

MODERN XEN ARCHITECTURE, AMD X86

Xen

DomU
• Unprivileged
• Device drivers for assigned devices
• Can run PV frontends and backends

CPU#0 CPU#1 CPU#2 CPU#3

Dom0
• Privileged
• Device drivers (all devices by default)
• “xl toolstack” to create additional VMs
• Can run PV frontends and backends

ETH Controller
SATA

Controller

Timers
Interrupt
Controller

MMU IOMMU PCI RC

CPU#4 CPU#5 CPU#6 CPU#7

CPU &
Schedulers

Driver SATA Driver

• Xen runs in its own privilege level (host mode)

• Xen owns the key HW components:
• CPUs, Timers, Interrupts, MMU,

IOMMU, PCI RC
• Uses AMD SVM

• Devices are directly assigned to Domains
• By default, to Dom0
• Fully configurable

• PVH only
• No need for QEMU for emulation
• No need for ”PV guests”
• QEMU only for VirtIO backends

• Dom0less (Hyperlaunch)
• Dom0 becomes optional

• Devices can be shared with a PV
frontend/backend architecture

• Both Xen PV drivers and VirtIO
• Multiple device sharing models

supported

H
o

st

G

u
e

st
 R

in
g

0

 G

u
e

st

 R
in

g
 3

VirtIO-net / PV
backend VirtIO/PV frontend

5

XEN: THE FULL SPECTRUM, FROM IVI TO VISION HUB

Real-time

Static Partitioning

Lower Complexity

Higher Safety Level

In-Vehicle Infotainment (IVI) Vision Hub

Graphics

Virtio & PV devices

Higher Complexity

Lower Safety Level

6

SURROUND

VIEW

IN CABIN

MONITORING

CUSTOM

WORKLOAD

Application Processing Unit: AMD x86 Ryzen Embedded

XEN: FROM IVI TO VISION HUB, AN EXAMPLE

Xen Hypervisor Abstraction

GAMING

“AAA”

Ubuntu

CUSTOM

WORKLOAD

Minimal

Linux

Integrated

GPU

ENTERTAINMENT

Android

Automotive

CPU Cores

Integrated Subsystems’ – Audio, Video & more

CLUSTER

Advanced UI

Vision Hub: ARM-based Versal AI Edge Gen 2

Cortex-RCortex-A

Platform MgmtProgrammable Logic

RTOS

or Linux

Classic RTOS

Middleware

CUSTOM

WORKLOAD

Middleware

VEHICLE

CONTROL

RTOS

or Linux

RTOS

or Linux

RTOS

Middleware

ISP STACK /

OTHER

HSM

PCIe Integrated

GPU, VCU,

ISP

AI/ML

Linux

SAFETY

Minimal UI

(Safety)

+

RTOS

Adaptive

Adaptive

Middleware – ROS2,DDS & more

Discrete GPU

SideBand

Xen Instance OpenAMP Xen Instance OpenAMP Xen Instance

Static Partitioning

8

XEN SCHEDULERS

CPU CPU

CPU CPU

sched=null

sched=credit

vCPU vCPU

vCPU vCPU

vCPU vCPU

vCPU vCPU

vCPU vCPU

Xen allows you to divide your physical
CPU cores into multiple CPU pools,
each with its own scheduler.

For example, you could choose the
null scheduler for one CPU pool to
fully dedicate physical CPUs to virtual
CPUs, optimizing for the best latency.
Meanwhile, in another pool, you can
use a general purpose scheduler.

This flexibility enables you to reach
your consolidation targets while
providing the best latency for real-
time workloads.

9

XEN SCHEDULERS: STATIC PARTITIONING CONFIGURATION

CPU CPU

sched=null

vCPU vCPU

CPU CPUvCPU vCPU

10

U-Boot

Xen

Dom0 DomU 1 DomU 2

CPU CPU CPU

boots

boots

DOM0LESS BOOT

• Create all the VMs in
parallel at boot

• Much faster boot times
• Dom0 is not needed

anymore to create VMs
• Dom0 is optional and can

be removed

11

Linux MMIO
map

Zephyr MMIO
map

PURE STATIC PARTITIONING

 Dom0less: everything defined statically before boot

‒ VM memory, including memory ranges

‒ Number of vCPUs

‒ Device assignment

 Null scheduler: only static vCPU-pCPU assignment

 No Dom0, no privileged VMs

 No hypercalls

 Minimal Xen footprint at runtime

‒ Only: virtual timer, virtual UART, virtual interrupt controller

 IOMMU is not a hard requirement

‒ MMIO and memory can be 1:1 mapped (on ARM)

‒ XMPU/AXI Filters/TMR for protection

 Hypervisor mode supported: Xen now running on Cortex-R52
and Cortex-R82 (no MMU!)

LinuxZephyr

CPU#0 CPU#1 CPU#2

Xen

MemoryZephyr
1:1 mem

Linux
1:1 mem

MMC GEM

NUM_DOMUS=2
DOMU_KERNEL[0]="linuxrt"
DOMU_RAMDISK[0]="initrd.cpio"
DOMU_VCPUS[0]=2
DOMU_STATIC_MEM[0]="0x100000 0x60000000"
DOMU_PASSTHROUGH_PATHS[0]="/axi/ethernet@ff0e0000"
DOMU_KERNEL[1]="zephyr.bin"
DOMU_STATIC_MEM[1]="0x0 0x100000"
DOMU_PASSTHROUGH_PATHS[1]="/axi/serial@ff000000"

12

VM 1:1 MEMORY MAPPING

• Guest physical addresses == Physical addresses

• ARM SMMU is not required for DMA address
translations any longer

• Another protection mechanism is required to
ensure isolation between VMs, e.g. Xilinx XMPU
and XPPU

Stage2 Pagetable

Controlled by Xen

Stage1 Pagetable

Controlled by the VM

virtual address

guest physical address

physical address

Device

ARM

SMMUv3

Memory

guest physical address

physical address

CPU

XMPU

13

REAL-TIME – CACHE COLORING

L2

Core

1

Core

2

Core

3

Core

4

DDR

L1 L1 L1 L1

14

REAL-TIME – CACHE COLORING

L2

Core

1

Core

2

Core

3

Core

4

DDR

L1 L1 L1 L1

Cache Coloring: cache partitioning
in software to zero the effects of
cache interference.

With Cache Coloring you can meet
stringent real-time deadlines even
under heavy interference from
neighboring guests.

15

REAL-TIME – CACHE COLORING

• CPUs clusters often share L2 cache

• Interference via L2 cache affects performance
‒ App0 running on CPU0 can cause cache entries evictions, which affect

App1 running on CPU1

‒ App1 running on CPU1 could miss a deadline due to App0’s behavior

‒ It can happen between Apps running on the same OS & between VMs
on the same hypervisor

• Hypervisor Solution: Cache Partitioning,
AKA Cache Coloring

‒ Each VM gets its own allocation of cache entries

‒ No shared cache entries between VMs

‒ Allows real-time apps to run with deterministic IRQ latency

‒ 3us IRQ latency under heavy interference

D

D

R

Core

1

Core

2

Core

3

Core

4

L2

D

D

R

16

IRQ latency measurements

Xilinx Ultrascale+ Cortex-A53

Xen Coloring provides stable
IRQ latency even under
severe levels of interference

BM: BareMetal
Xen: Xen without cache coloring
Xen col: Xen with cache coloring

solo: no interference
interf: 1 interference VM
2interf: 2 interference VMs
3interf: 3 interference VMs

RESULTS

18

• Dom0less (Hyperlaunch) boot
• Critical for short boot times
• No Dom0, only a limited-privileged Linux hardware domain

• All Domains are PVH
• Better VM boot times
• Direct kernel boot possible

• Much smaller QEMU machine for VirtIO backends only
• QEMU machine common between ARM and x86

• FreeRTOS and other RTOSes available to run critical apps

• Xen PV Drivers:
• 1x PV audio device

• VirtIO:
• 1x VirtIO-net
• 1x VirtIO-block
• 1x VirtIO-gpu device
• 1x VirtIO-tee device
• 1x VirtIO-gpio device
• 4x VirtIO-i2c device
• 1x VirtIO-input

XEN-POWERED IVI STACK

Free RTOS
PVH

Xen Dom0less / Hyperlaunch

AMD x86

Memory Management

VM Communication

Scheduling

IOMMU

Android IVI
PVH

IVI Application

Other

Devices
GPU

Audio IO

PSP

TEE

A

C

P

D

C

N

V

C

N

12 S/
TDM

Ubuntu
PVH

Gaming

Application

Other

Devices

Linux Cluster
Yocto PVH

Cluster / HUD

Application

ADAS

Application

Adaptive

Autosar

Host Drivers

AMD
GPU

IO PSP

Safe

Application

VirtIO

Frontend Drivers

dGPU
P

a
s
s
th

ro
u
g
h

VirtIO

Frontend Drivers

GPU

VirtIO

Backend

VirtIO

Frontend Drivers

19

SAFETY CERTIFYING XEN HYPERVISOR

 Xen is the Open-Source reference hypervisor
for embedded and automotive at AMD

‒ AMD has an in-house engineering team to
develop, enhance, and support Xen for
embedded and automotive

‒ Ayan Kumar Halder, Edgar Iglesias, Jason Andryuk,
Luca Miccio, Michal Orzel, Stewart Hildebrand,
Victor Lira, Xenia Ragiadakou

‒ Xen is delivered to customers today as reference
and is supported by Forum, Premium Technical
support, and Engineering

‒ Xen in production across multiple verticals

 AMD is working on making Xen safety-certifiable
‒ IEC 61508 SIL 3 & ISO 26262 ASIL D

‒ Strictest level of safety for automotive

‒ Certification based on Xen upstream community
processes and upstream codebase

‒ AMD platforms both ARM and AMD x86

‒ Not working with a private fork -- Ability to update the
certification with limited efforts

‒ Open to collaborations with other community
members upstream

A new Xen Architecture
for Safety

21

MODERN XEN ARCHITECTURE FOR SAFETY

Xen

DomU
• Unprivileged
• Device drivers for assigned devices
• Can run PV and VirtIO frontends

CPU#3 CPU#4 CPU#5

Hardware Domain
• Limited privileges
• Owns all devices by default, except passthrough devices
• Device drivers
• VirtIO and PV drivers backends

GEM0 PCI Device

Timers
Interrupt
Controller

MMU IOMMU PCI RC

CPU#6 CPU#7 CPU#8 CPU#9

CPU &
Schedulers

Eth Driver

Device Driver

VirtIO-net / PV
backend

VirtIO/PV frontend

E
L2

 /
 H

o
st

EL
1

 /
 R

in
g

 0

EL
0

 /
 R

in
g

 3

do
m

0less

Control Domain

• Privileged
• Optional
• Perform privileged

operations such as
monitoring and DomU
reset

CPU#2CPU#1CPU#0

Dom0

22

ROLES AND PRIVILEGES

Xen

DomU
• Unprivileged
• Device drivers for assigned devices
• Can run PV and VirtIO frontends

CPU#3 CPU#4 CPU#5

Hardware Domain
• Limited privileges
• UnsafeVM
• Owns all devices by default
• VirtIO backends

GEM0 PCI Device

Timers
Interrupt

Controller
MMU IOMMU PCI RC

CPU#6 CPU#7 CPU#8 CPU#9

CPU &

Schedulers

Eth Driver

Device Driver

VirtIO-net

backend
VirtIO-net frontend

E
L

2
 /

 H
o

s
t

E
L

1
 /

 R
in

g
 0

E

L
0

 /
 R

in
g

 3

d
o

m
0

le
s
s

Control
Domain

Privileged
SafeVM

CPU#2CPU#1CPU#0

DomU

Unprivileged
SafeVM

Driver Domain
• Limited privileges
• UnsafeVM
• Owns one device
• VirtIO backend

NVME

NVMe

Driver

VirtIO-blk

backend
VirtIO-blk frontend

23

FEATURES IN SCOPE

• No OS/hypervisor dependencies: run (multiple)
Safe VMs and QM VMs of your choice

• Common code and core components in Xen

• UART, IOMMU, Interrupt Controller, Timer, PCI

• Static Configuration

• Domain creation via Dom0less (no dynamic VMs)

• Memory, vCPU, virtual devices, allocated at boot time

• No dynamic memory management

• Dom0less domain reboot (domain reset)

• Passthrough, both PCI and non-PCI

• All DMA operations are protected by IOMMU

• CPUPools, null, and credit2 schedulers

• Domain Reset

• Domain reboot, without memory reallocation

• Control Domain | Hardware Domain | DomU roles
with different levels of privilege

• Hardware Domain is Dom0 without the ability to
cause damage

• Hardware Domain can be QM

• VM-to-VM communication and Device Sharing

• VirtIO and PV Drivers frontends/backends

• Event channels: VM-to-VM event notifications

• Static shared memory

• Grant table: voluntary VM-to-VM memory sharing

• Argo (vsock-like interface)

24

VIRTIO, PV DRIVERS, AND OTHER VM-TO-VM COMMUNICATION MECHANISMS

Simpler VM-to-VM communication mechanisms
• Static shared memory and event channels

• Grant table and event channels

• Argo – hypervisor-mediated memory copies

• All of these can work between Safe/Unsafe VMs

VirtIO and PV Drivers

• The building blocks in Xen are part of the safety
certification scope

• Existing implementations are not Free-From-Interference

• The ring protocol is not designed for safety

• Potentially dangerous sync (waiting) operations

• Potentially dangerous memory mappings

• The frontends are particularly exposed to interference

• It should be possible to write a Safe backend today

• Current recommendation:

• Use VirtIO between QM VMs

• The Hardware Domain can be QM

• We are working on two VirtIO protocol extensions that
enable VirtIO between SafeVMs, including Safe frontends,
but will require protocol changes

25

Xen Hypervisor software safety certification
ISO 26262:2018, Element level ASIL D

IEC 61508, Edition 2 Systematic Capability 3 (SIL 3)

Phase I

Safety
Concept
Review

Phase II

Final
Assessment

XEN HYPERVISOR SAFETY CERTIFICATION PLAN

26

Xen Hypervisor software safety certification
ISO 26262:2018, Element level ASIL D

IEC 61508, Edition 2 Systematic Capability 3 (SIL 3)

Phase I

Safety
Concept
Review

Phase II

Final
Assessment

XEN HYPERVISOR SAFETY CERTIFICATION PLAN

Completed November 2024!

27

THE XEN COMMUNITY AND FUNCTIONAL SAFETY

Upstreaming Activities Nearing Completion

• Code Changes to Xen & Implementation of New
Features relevant to the Safety Architecture

• PVH completion

• Hyperlaunch/Dom0less and static configurations

• PCI Passthrough (vPCI)

• MISRA C Compliance

• Goal: improve the Xen codebase

• MISRA C compliance is never at the expense of quality

• Adopt MISRA C rules as part of the Xen coding guidelines

• Address or deviate MISRA C violations in Xen

• BUGSENG ECLAIR MISRA C checker integrated in the
Gitlab CI-loop

Ongoing Upstreaming Activities

• Hardware Domain / Control Domain separation

• Assumptions of Use
• Assumptions Xen relies on regarding other components

• Software Safety Requirements
• All functional requirements of the software

• Define scope and requirements structure

• “market”, “product” and “software safety” requirements

• Traceability

• Software Architecture Specification

• All interfaces and designs aligned with the functional
safety requirements

28

XEN SAFETY PROGRESS: MISRA C

 Preliminary tailoring resulted in the selection of 143 MISRA C rule candidates

 MISRA C rules adoption in progress:

‒ 120 rules adopted and added to docs/misra/rules.rst

‒ 0 rules left to discuss among maintainers and BUGSENG experts!

 Xen 4.18 release: 148 commits to fix MISRA C violations by

 ECLAIR MISRA C scanner integrated in the upstream Xen Gitlab CI-loop

‒ 87 rules checked with zero unjustified violations (“clean” and checked against regressions)

‒ 17 additional rules monitored at each commit (only few violations left, checked against regressions)

29

XEN SAFETY REQUIREMENTS

Requirements
• Detailed docs of all expected software

behaviours

• Written in plan English from the perspective of
what Xen is expected to fulfil

• The software safety requirements (SSR) are the
most granular form

• SSR should be unambiguous, complete,
consistent, correct

• Engineers are expected to refer to a SSR (and
architecture spec) to write tests to validate it

• Each SSR should be tested independently

Traceability
• Define the Market Requirements first

• Market Requirements are linked to Product
Requirements. Product Requirements
explain how the hypervisor implements Market
Requirements

• Product Requirements are further split into
numerous Software Safety Requirements, which
are individually testable

• Market Requirements, Product Requirements and
SSR should be independently baselined

• SSR should be traceable all the way to market
requirements

Market
requirements

Product
requirements

Software safety
requirements

Test
case

Test
code

Test
job

1 to 1M to N M to N 1 to N N to 1

30

REQUIREMENTS-AS-CODE

• Traceability typically handled with complex proprietary solutions
• They do not work well in an Open Source community environment

• Requirements are documents → Reuse the same processes we already have in Xen also for Requirements

• Benefits:

• The Xen Community is already familiar with it

• Zero ramp up time, high speed of development and review

• Alignment with Zephyr, ELISA, and other Open Source software projects

• For years now, the larger Open Source Community has been re-using the same powerful tools and
processes for both code and documentation

• Write plain text documents using formats like RST and Markdown
• Easily readable and modifiable in source format

• They can also be rendered to PDF and HTML

• Same submission and review process as code; same version control as code

31

REQUIREMENTS-AS-CODE

RST HTML

32

REQUIREMENTS-AS-CODE: TRACEABILITY

Linking and Traceability for Requirements-as-Code
• Open Source projects started to address this need:

• OpenFastTrace

• StrictDoc

• Basil

We are using OpenFastTrace for linking and
traceability reports

Requirements-as-Code is a great fit for Open
Source software projects

No need for proprietary tools

OpenFastTrace: OSS requirement tracing tool
• Handles requirements written in markdown, RST

• Link requirements all the way to code

• Independent versions for each requirement

• Detect missing dependencies (missing links)

• Detect obsolete requirements (old versions)

• Generate reports in html and xml

• Extremely lightweight and fast

• Very mature (~7 years old), actively Maintained,
proven in use

• https://github.com/itsallcode/openfasttrace/blob
/main/README.md

https://github.com/itsallcode/openfasttrace/blob/main/README.md
https://github.com/itsallcode/openfasttrace/blob/main/README.md

33

OPENFASTTRACE – WRITING A REQUIREMENT

A Requirement Title With an Underline

`req~this-is-the-id~1` This is the unique specification id

Description:

Each specification id consist of 3 parts

- Artifact type – 'req’

- Name - 'this-is-the-id’

- Revision number – 1

Needs:

- subreq The artifact type of its sub requirement (i.e. child requirement)

34

TRACEABILITY REPORT:

35

SURROUND

VIEW

IN CABIN

MONITORING

CUSTOM

WORKLOAD

Application Processing Unit: AMD x86 Ryzen Embedded

USING XEN AS A UNIFIED RUNTIME MANAGER

Xen Hypervisor Abstraction

GAMING

“AAA”

Ubuntu

CUSTOM

WORKLOAD

Minimal

Linux

Integrated

GPU

ENTERTAINMENT

Android

Automotive

CPU Cores

Integrated Subsystems’ – Audio, Video & more

CLUSTER

Advanced UI

Vision Hub: ARM-based Versal AI Edge Gen 2

Cortex-RCortex-A

Platform MgmtProgrammable Logic

RTOS

or Linux

Classic RTOS

Middleware

CUSTOM

WORKLOAD

Middleware

VEHICLE

CONTROL

RTOS

or Linux

RTOS

or Linux

RTOS

Middleware

ISP STACK /

OTHER

HSM

PCIe Integrated

GPU, VCU,

ISP

AI/ML

Linux

SAFETY

Minimal UI

(Safety)

+

RTOS

Adaptive

Adaptive

Middleware – ROS2,DDS & more

Discrete GPU

SideBand

A Common Hypervisor Layer across Clusters

Xen Instance OpenAMP Xen Instance OpenAMP Xen Instance

Virtio-
frontend

Virtio-
frontend

Virtio-
backend

Virtio-
backend

36

Xen Hypervisor on
AMD x86 CPUs

Linux VM

virtio-net
driver

WORK-IN-PROGRESS: HETEROGENEOUS VIRTIO-NET ACROSS PCIE

Xen Hypervisor on
AMD-Xilinx ARM CPUs

Ethernet network

Linux VM

PCI

QEMU
virtio-net

TAP0ETH0

Ethernet
driver

SW Ethernet switch

Virtio-net

Virtual

Physical

37

CONCLUSIONS

 The Xen community is working on making
Xen safety-certifiable ISO 26262 ASIL-D
‒ Certification based on Xen upstream community processes and code

‒ Broad industry collaboration on Xen Safety; bi-weekly meetings:

‒ Resiltech, Renesas, Ford, Boeing, EPAM, ARM, BUGSENG,
Tenstorrent, RSB

‒ Let’s work together!

‒ MISRA C and Software Safety Requirements

 Xen Architecture for Safety

‒ From Vision Hub to IVI

‒ Mixed-criticality, Real-time, VirtIO and PV Drivers

‒ Multiple configurations possible

‒ e.g. number of Safe VMs, presence of Control Domain, criticality of
Hardware Domain

 Accelerating momentum in the Xen Project
‒ Honda and Ford becoming part of the Xen community

stefano.stabellini @ amd.com

xen-devel @ lists.xenproject.org

38

Thank You!

	Introduction
	Slide 1: Xen Hypervisor: Progress on safety certifiability
	Slide 2: Xen: Open Source Community
	Slide 3: Modern Xen Architecture, ARMv8 (AND RISC-V)
	Slide 4: Modern Xen Architecture, AMD x86
	Slide 5: Xen: the full spectrum, From IVI TO VISION HUB
	Slide 6: XEN: FROM IVI TO VISION HUB, an example
	Slide 7: Static Partitioning
	Slide 8: Xen Schedulers
	Slide 9: Xen Schedulers: Static Partitioning Configuration
	Slide 10: Dom0less Boot
	Slide 11: Pure Static Partitioning
	Slide 12: VM 1:1 memory mapping
	Slide 13: Real-time – Cache coloring
	Slide 14: Real-time – Cache coloring
	Slide 15: Real-time – Cache coloring
	Slide 16: Results
	Slide 18: XEN-powered IVI stack
	Slide 19: Safety certifying Xen Hypervisor
	Slide 20: A new Xen Architecture for Safety
	Slide 21: Modern Xen Architecture for safety
	Slide 22: Roles and Privileges
	Slide 23: Features in Scope
	Slide 24: Virtio, PV drivers, and other VM-to-Vm communication mechanisms
	Slide 25: Xen Hypervisor Safety Certification Plan
	Slide 26: Xen Hypervisor Safety Certification Plan
	Slide 27: The Xen Community and functional safety
	Slide 28: Xen Safety Progress: MISRA C
	Slide 29: Xen Safety Requirements
	Slide 30: Requirements-as-Code
	Slide 31: Requirements-as-Code
	Slide 32: Requirements-as-Code: Traceability
	Slide 33: OpenFastTrace – writing a requirement
	Slide 34: Traceability Report:
	Slide 35: Using Xen as a Unified Runtime Manager
	Slide 36: WORK-in-progress: heterogeneous Virtio-net Across pcie
	Slide 37: Conclusions
	Slide 38: Thank You!

