
1

Attempting to 
measure the Graviton



2

Benchmarking is hard
● Modern CPUs are complex

○ Cache
○ Dynamic frequency scaling
○ NUMA (resource grouping)

● Operating System interference
○ Interrupts

■ Disk I/O
■ Network packets

● Background processes



3

Benchmarking in the cloud is harder
● Virtualization and containerization overhead

○ Hypervisor also uses CPU cycles

● Performance counters are not always available on Virtual Machines

● Shared resources and noisy neighbors
○ CPU cache pollution
○ Memory bandwidth contention

Is it possible to get consistent results in the cloud?



4

Instance characteristics 
● No turbo boost
● (At least) 2GB of RAM per core
● 1 NUMA node
● Private L1/L2 cache
● Shared L3 cache
● SSD/SSD-based (e.g., Amazon EBS) disk



5

Setup
● SPEC CPU® 2017

○ Stresses CPU, memory and compiler
○ 3 iterations, to measure variance
○ SPECrate® 2017

■ 1 copy, CPU affinity set
○ SPECspeed® 2017

■ All cores used

● Ubuntu 24.04 LTS
○ Docker container

● LLVM 20.1.0
○ Flags: -O3 -flto



6

Result charts
● Instance times and standard deviations are the geometric means of all tests

○ Ex: SPECint time = geomean(500.perlbench_r, 502.gcc_r, …)

● Mean times and standard deviations are calculated over instance times
○ Ex: SPECint mean time = mean(instance1, instance2, …)



7

AWS - Graviton4



8

AWS - Graviton4 - worst cases



9

AWS - Graviton4
● Worst case

○ Individual benchmark with the largest standard deviation in a given instance
○ Mean: benchmark with the largest standard deviation across all instances

● Bare-metal dedicated instance (baseline)
○ No interference

■ Physical hardware doesn’t run instances from other AWS accounts
○ No hypervisor

■ OS runs directly on hardware
■ Still managed by AWS Nitro

○ No Docker container
■ No significant overhead was observed when running inside a container

More details: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-instance.html

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-instance.html


10

AWS - Graviton4 - SPECspeed®



11

AWS - Graviton4 - SPECspeed® - worst cases



12

AWS - Graviton3



13

AWS - Graviton3 - worst cases



14

Microsoft Azure - Cobalt 100



15

Microsoft Azure - Cobalt 100 - worst cases



16

Google Cloud - Google Axion



17

Google Cloud - Google Axion - worst cases



18

Google Cloud - Google Axion

● Google Titanium
○ Offload network and I/O processing
○ Hardware acceleration for virtualization services



19

AWS vs Azure vs GCP



20

AWS vs Azure vs GCP - Notes

● Approximate estimate

● Few runs

● Few instance types

● Subject to random interference from other tenants



21

Costs
● 32 vCPUs, 2 GB/core:

○ AWS Graviton 3 - 1.16 USD/hr
○ AWS Graviton 4 - 1.28 USD/hr
○ Azure Cobalt 100 - 1.25 USD/hr
○ Google Axion - 1.44 USD/hr

■ Compute-optimized not available, cost for standard (4GB/core)

● 96 vCPUs, 2 GB/core, bare metal dedicated instance:
○ AWS Graviton 4 - 4.21 USD/hr

● Storage and network costs not included



22

Final considerations
● PMUs worked only on AWS Graviton3/Graviton4

● Variation
○ Usually low in the same instance, in short (few hours) intervals
○ Can be high when comparing different instances or individual benchmarks
○ More vCPUs don’t guarantee better performance or lower variation
○ Some workloads are more sensitive than others (e.g., int vs fp)

● Best options for consistent results
○ AWS bare-metal dedicated instances (more expensive)
○ Google Axion instances (no PMU)

Azure dedicated hosts: https://learn.microsoft.com/en-us/azure/virtual-machines/dedicated-hosts
GCP sole-tenant nodes: https://cloud.google.com/compute/docs/nodes/sole-tenant-nodes

https://learn.microsoft.com/en-us/azure/virtual-machines/dedicated-hosts
https://cloud.google.com/compute/docs/nodes/sole-tenant-nodes


23

Future work
● Check if it’s possible to enable PMUs on Cobalt 100/Google Axion

● Test other ARM CPUs

● Check if smaller AWS dedicated instances also have low variation
○ Lower cost
○ Multiple dedicated instances (of the same account) may interfere with each other

● Try to detect performance degradation

● Investigate interference causes and most affected workloads



24

Thank You!


