
1

Virtio Meets ARM
FF-A: Bridging Normal
and Secure Worlds in
Virtualized Systems
Bertrand Marquis / Viresh Kumar
ARM / Linaro

2

Virtio-msg
● New Virtio Transport

○ along side PCI, MMIO and Channel I/O
○ Message based
○ Large range of Targets

■ Heterogeneous, Secure/Non-secure, VM to VM, …etc
○ More details in Bill Mills presentation

■ “Virtio-msg: Making virtio work anywhere”
● Layer based design

○ Virtio-msg Transport
■ Request to Message
■ Agnostic of the communication medium

○ Virtio-msg Bus
■ Communication specific

● IPC, Hypercall, mailbox, Xen, FF-A, …etc
■ Roles:

● Bus and Device discovery
● Bus and Device lifecycle (hotplug)
● Optional DMA management
● Message transport between Frontend and

Backend

3

Virtio-msg: Android 16 use case

TZ TEE
(Reduced Surface)

Trusty kernelGKI

Android

Widevine pVM
(Google delivered)

Application (APKs/APEXes)

Virtio-vsock/msg

Protected VM

binder RPC

tRust SDK

pKVM

TEE kernel

Legacy Binder / Binder RPC

SEE IPC

Media
Framework SettingsService

OEMCrypto
Trusted Applet

HWCrypt
o Bp

Keystore

Trusty kernel

binder RPC

tRust SDK

Storage Bp

Security pVM
(Keymint/GK)

PMM Plugin

Media Pipeline
Drivers

Storage
Bp

HWCrypt
o Bp

HWCrypto
Srv

Secure
Storage Srv

AuthMgrFE

Legend:
● purple boxes: SoC vendor delivered services/drivers,

implementing trusted HALs, and Protected Memory
Manager

● orange boxes: OEM delivered TA (Innovation)
● green boxes: Android delivered (Services, Applets, tRust

SDK)
● blue boxes: Standardised linux or Trusty driver (upstream)

● Bp: stands for Binder Proxy; i.e client side of the IPC
● Bn: stands for Binder Native; i.e service side of the IPC

tRust SDK

HWCrypto Bn Storage Bn

binder RPC

AuthMgrBEAuthMgrFE

Widevine CDM

Trusted HAL client
(serialisation
proxy)

Remote Trusted
HAL services

Keymint
Trusted Applet

Gatekeeper
Trusted Applet

Guest FFA
Proxy

Virtio-vsock/msg Virtio-vsock/msg

4

Virtio-msg: VM to TZ in Android 16

Host Linux
kernel

pKVM Hypervisor

FF-A
driver

pVM Guest
(Microdroid or Trusty OS)

Android Host

FF-A host proxy FF-A Guest proxy

Virtio-msg /
FF-A driver
(Frontend)

EL3 (ARM TF-A)
SPMD & SPMC

TEE Trusted Service 1. Android Host
starts a VM

2. The guest VM probes the
FF-A driver

3. The driver establishes a shared
virtqueue with TEE (Trusty OS)

4. A new IPC link is established
over the shared mem

virtqueue with TEE. The app
opens /dev/tipc and apps can

talk across domains !

What’s going on ?

CrosVMvirtmgr Trusted App

1

2

3

4

Virtio-msg /
FF-A driver
(Backend)

Optional:
S-EL2 (ARM TF-A)

Hafnium

QEMU testbench shared on aosp

5

Virtio-msg: FF-A 1.2 features used
● Protocol UUID-based messaging/identification

○ FF-A endpoints identified using a protocol UUID
○ UUID based addressing for communication

● FF-A direct or indirect messaging
○ Transmit protocol messages
○ Bus discovery, events and hotplug

● Memory sharing
○ FF-A memory sharing operations used map driver memory in device
○ Virtio Virtqueues and DMA use FF-A memory sharing

6

Virtio-msg: FF-A as Bus
● Discovery by FF-A Virtio-msg Frontend

○ Finds endpoint with the FF-A Virtio-msg
backend UUID

■ FF-A ABI: FFA_PARTITION_INFO_GET
○ Device Messaging type to use

■ Direct or Indirect
■ From partition info

○ Retrieve FF-A backend information
■ Virtio-msg: FFA_BUS_MSG_VERSION

○ List devices in endpoint
■ Virtio-msg: BUS_MSG_GET_DEVICES

○ Get device information
■ Virtio-msg: VIRTIO_MSG_GET_DEVICE_INFO

○ Register device
■ Probe from Virtio Driver

● Relay messages from Transport
○ Using direct or indirect messages
○ Driver config access, virtqueue configuration
○ Events from driver/device

7

Virtio-msg: FF-A as Bus
● Memory sharing from Frontend

○ DMA map requests from Driver/Transport
○ Share memory with backend endpoint

■ FF-A ABI: FFA_MEM_SHARE
○ Signal memory shared to backend

■ Virtio-msg: FFA_BUS_MSG_AREA_SHARE
○ Backend maps memory

■ FF-A ABI: FFA_MEM_RETRIEVE
○ Unshare once done

■ Virtio-msg: FFA_BUS_MSG_AREA_UNSHARE
■ FF-A ABI: FFA_MEM_RELINQUISH
■ FF-A ABI: FFA_MEM_RECLAIM

● Device hotplug/unplug
○ Signal to frontend devices added/removed

■ Virtio-msg: BUS_MSG_DEVICE_ADDED
■ Virtio-msg: BUS_MSG_DEVICE_REMOVED

8

Status Update

9

Early Development Challenges
● No infrastructure available to test virtio-msg transport with FF-A.

● Reused prior setup from Project Orko / Stratos
○ Hypervisor agnostic Rust based Virtio backends (github: rust-vmm)
○ Xen setup with Xen-vhost-frontend (Rust, MMIO support)

● Developed a generic virtio-msg transport layer in Linux
○ Implemented MMIO bus layer
○ MMIO traps in the configuration space to communicate with backends

● Unblocked subsequent development providing a generic virtio-msg implementation

10

Virtio-msg over FF-A (Xen)
● FF-A Indirect message support in Xen (Bertrand Marquis)
● Developed the Virtio-msg FF-A bus implementation in Linux
● Required FF-A Indirect messages support in Linux

○ Out of tree patches (Sudeep Holla / ARM)
○ Numerous fixes over that

● Tested Rust based I2C / GPIO backends (github: rust-vmm)
● Memory sharing - pending

11

Virtio-msg over FF-A (Android / Trusty)
● Android Virtualization Framework (AVF)

○ Running isolated virtual machines
○ pVM (pKVM) / Microdroid guests

● Secure Partition Manager (SPM) for running secure partitions, two options:
○ Hafnium in S-EL2
○ EL3 SPMC for devices that don’t support S-EL2

● Trusty - Secure partition (SP)
● Virtio-msg (FF-A) to communicate between pVM / SP and Host / SP
● Tested Virtio-msg with FF-A bus (Direct messages) between Host / SP and pVM / SP
● Tested FF-A based memory sharing
● Google verified:

○ pVM (Trusty) / SP (Trusty) - non Linux
○ WIP: pVM (Microdroid) / SP (Trusty)

12

Virtio-msg: FF-A memory sharing
● FF-A based memory sharing between endpoints.
● Dynamic mapping

○ Advance mapping for virtqueues (dma_alloc_coherent)
○ On demand for buffer (kmalloc) mapping
○ High runtime overhead for small buffers

● Static mapping
○ “reserved-memory” in DT (“restricted-dma-pool”)
○ “memory-region” in FF-A device node
○ Large enough chunk of memory mapped at initialization
○ DMA coherent allocations from this region
○ On demand buffers (kmalloc) are bounced (memcpy) from this region
○ Potentially unused memory
○ Low runtime cost

13

Thank You!

