
1

From The Shadows
Guarded Control Stacks on AArch64

David Spickett, Arm/Linaro

2

FYI
● Code presented is entirely fictional, but inspired by real events.

● Code presented is deliberately bad, but inspired by real “quality”.

● Other security options are available, many of which also mitigate this problem.

● This is a high level / “user space” introduction to GCS, the Architecture Manual has
more detail.

3

Guarded Control Stack
● Checks return address integrity

(which I will show with a demo program)

● Provides an easy and fast way to backtrace

(which I will show by debugging the demo program)

4

Return Address Corruption

5

Save Files
● A hypothetical game has binary save files:

Lack of checksum and string handling would be 2 things to investigate but not on the
menu today.

Name 8 bytes (7 characters plus null character)

Coins 8 byte unsigned integer

6

Loading Save Files
void read_save_file(const char* save_file, SaveFile* dest) {

 FILE* f = fopen(save_file, "rb");

 if (!f) {

 printf("Save file not found!\n");

 exit(1);

 }

 fread(dest, sizeof(SaveFile), 2, f);

 fclose(f);

}

7

The Normal Case
My name and 99 coins:
echo -n -e 'David_S\x00\x63\x00\x00\x00\x00\x00\x00\x00' > savefile

Result:
./demo savefile

Hello David_S!

You have 99 coins

It works, right?

8

Problems
● Reviewers might say:

○ Why does it not check how many bytes were actually read?
○ Why does it load 2 SaveFile not 1?

 fread(dest, sizeof(SaveFile), 2, f);

 fclose(f);

}

Attackers won’t say anything, but they will try to exploit this…

9

Evil Save File
echo -n -e
'David_S\x00\x63\x00\x00\x00\x00\x00\x00\x00Dr.Evil\x00\x04\xaa\xaa\xaa\xaa\xaa\x00\x00'
> evilsavefile

$ xxd evilsavefile

00000000: 4461 7669 645f 5300 6300 0000 0000 0000 David_S.c.......

00000010: 4472 2e45 7669 6c00 04aa aaaa aaaa 0000 Dr.Evil.........

● One legitimate save file.
● One for Dr. Evil, who is doing so well, he has 187649984473604 coins.

10

Evil Save File
(gdb) run

Starting program: ./demo ./evilsavefile

Hello David_S!

You have 99 coins

Super secret function!

[Inferior 1 (process 3357284) exited normally]

The amount of coins == the address of secret_function!

Caveats:
● -fno-stack-protector, because that also prevents this.
● Using GDB to disable ASLR so I don’t have to guess the address each time.
● Real attackers would be more sophisticated and not need these helpers.

11

Evil Save File

00000000: 4461 7669 645f 5300 6300 0000 0000 0000 David_S.c.......

00000010: 4472 2e45 7669 6c00 04aa aaaa aaaa 0000 Dr.Evil.........

First part is written to “dest”

Second part overflows into the
a caller’s stack frame

Overwrites the stored link register

12

Before And After
(lldb) n
-> 70 fread(dest, sizeof(SaveFile), 2, f);
(lldb) bt
 * frame #0: read_save_file
 frame #1: read_name4
 frame #2: read_name3
 frame #3: read_name2
 frame #4: read_name
 frame #5: main

<...>
(lldb) n
-> 71 fclose(f);
(lldb) bt
 * frame #0: read_save_file
 frame #1: read_name4
 frame #2: read_name3
 frame #3: secret_function
 frame #4: read_name

read_name3 -> read_name2 ✅

read_name3 -> secret_function ❌

13

Stack Overwrite

Could be the start of many types
of attacks.

Most relevant is
“Return Oriented Programming”.

High Address

read_name3

return address

frame pointer

read_name4

SaveFile

<...>

read_save_file

<...>

Low Address

Stack grows down

Writes go up

14

Return Oriented Programming (ROP)
● Attacker takes control of the return address.
● Builds a “chain” of short sequences called “gadgets” in the binary.
● Gadgets do something useful, then end in a control transfer (e.g. return).
● For example, loads from stack into a register.
● Gadgets can be programmatically found in known programs.

Will not cover the mechanics today. The key points are:
● ROP is powerful and can do arbitrary things given enough gadgets.
● ROP relies on the return address being changed.

For more info see: https://llsoftsec.github.io/llsoftsecbook/#return-oriented-programming

https://llsoftsec.github.io/llsoftsecbook/#return-oriented-programming

15

Other Options Are Available
Many ways to prevent this specific exploit type:
● nodiscard on fread return value, pay attention to warnings
● Banning “unsafe” C functions (for some definition of “unsafe”)
● Address Sanitizer (not suitable for production)
● Memory Tagging (Arm v8.5-a)
● Pointer Authentication (signing the return address)
● Layout randomisation (make the attacker guess where functions are)
● Stack Protectors and/or Stack Cookies
● Capabilities? (CHERI)
● Static analysis
● Not using C? 🦀
● …

Not all work all the time, not all are focused on return address integrity.

16

Guarded Control Stack (GCS)

17

Guarded Control Stack
● FEAT_GCS, optional from Armv9.3-a.
● Hardware implementation of a “shadow stack”.

● Return addresses stored in a protected area of memory,
in addition to the normal link register and stack.

● Guarded Control Stack Pointer Register (GCSPR_ELx)

● Branch and link pushes to the control stack.
● Procedure return pops from the control stack.

● Popped return address must match the link register’s value.

(other GCS management instructions are available)

18

Example

int fn_a() { return fn_b(); }

int fn_b() { return 1; }

● fn_a calls fn_b
● fn_b returns to fn_a
● fn_a returns to its caller

19

Calling fn_b (GCS Push)
 1 fn_a():

 2 stp x29, x30, [sp, #-16]!

 3 mov x29, sp

 4 bl fn_b() <-- PC

 5 mov w0, #1

 6 ldp x29, x30, [sp], #16

 7 ret

 8

 9 fn_b():

 10 mov w0, #1

 11 nop

 12 ret

Address Value

N X

N-8 ?

N-16 ?

Guarded Control Stack

← GCSPR

PC = 4, Link Register = X

20

Returning to fn_a (GCS Pop)
 1 fn_a():

 2 stp x29, x30, [sp, #-16]!

 3 mov x29, sp

 4 bl fn_b()

 5 mov w0, #1 <-- LR

 6 ldp x29, x30, [sp], #16

 7 ret

 8

 9 fn_b():

 10 mov w0, #1 <-- PC

 11 nop

 12 ret

Link register == GCS value
Return is allowed ✅

Address Value

N X

N-8 5

N-16 ?

Guarded Control Stack

← GCSPR

PC = 10, Link Register = 5

21

Returned from fn_b
 1 fn_a():

 2 stp x29, x30, [sp, #-16]!

 3 mov x29, sp

 4 bl fn_b()

 5 mov w0, #1 <-- PC, LR

 6 ldp x29, x30, [sp], #16

 7 ret

 8

 9 fn_b():

 10 mov w0, #1

 11 nop

 12 ret

Address Value

N X

N-8 5

N-16 ?

Guarded Control Stack

← GCSPR

PC = 5, Link Register = 5

22

Returning from fn_a (GCS Pop)
 1 fn_a():

 2 stp x29, x30, [sp, #-16]!

 3 mov x29, sp

 4 bl fn_b()

 5 mov w0, #1

 6 ldp x29, x30, [sp], #16

 7 ret <-- PC

 8

 9 fn_b():

 10 mov w0, #1

 11 nop

 12 ret

Link register reloaded
About to return

Link register == GCS value
Return will be allowed ✅

Address Value

N X

N-8 5

N-16 ?

Guarded Control Stack

← GCSPR

PC = 7, Link Register = X

23

Corrupted Return Address
 1 fn_a():

 2 stp x29, x30, [sp, #-16]!

 3 mov x29, sp

 4 bl fn_b()

 5 mov w0, #1

 6 ldp x29, x30, [sp], #16

 7 ret <-- PC

 8

 9 fn_b():

 10 mov w0, #1

 11 nop

 12 ret

Link register reloaded
About to return

Y != X
Return will not be allowed ❌

Address Value

N X

N-8 5

N-16 ?

Guarded Control Stack

← GCSPR

PC = 7, Link Register = Y

24

Using GCS

25

Enabling GCS
● When GCS is first enabled, the control stack is empty.
● You cannot return from the point you enable GCS.

● Unless you manually push addresses…

Address Value

N 0

N-8 ?

N-16 ?

← GCSPR

26

Enabling GCS
● Demo enables GCS from main, usually C library would have done this for you.
● Syscall using a macro, so we do not have to execute a ret afterwards.
● Push link register to GCS so we can return to main.

void enable_gcs() {

 my_prctl(PR_SET_SHADOW_STACK_STATUS, PR_SHADOW_STACK_ENABLE | PR_SHADOW_STACK_PUSH, 0,
0, 0);

 __asm__ __volatile__("sys #3, C7, C7, #0, x30\n" /* gcspushm link register */);

}

● The syscall:
○ Allocates memory to hold the Control Stack
○ Points the GCSPR_EL0 to the first entry of the Control Stack

27

GCS to the Rescue
$./demo_gcs evilsavefile

Hello David_S!

You have 99 coins

Segmentation fault

The exploit was stopped!

A backtrace would be nice though…

28

GCS For Backtracing

29

Backtracing
An alternative use case for GCS is backtracing.

Walking the GCS is much easier than figuring out stack frame layouts.

Let’s see what we can get after stopping the exploit!

30

Signal Handler
● Attach handler to SIGSEGV.

 struct sigaction act;

 act.sa_handler = handler;

 sigemptyset(&act.sa_mask);

 act.sa_flags = 0;

 sigaction(SIGSEGV, &act, NULL);

● Handler can look for si_code = SEGV_CPERR (control protection error)
(not done in this demo)

31

Signal Handler
 1 void handler(int signal) {

 2 uint64_t *gcspr = get_gcspr();

 3 printf("gcspr is %p\n", gcspr);

 4

 5 for (; ; gcspr++) {

 6 uint64_t entry = *gcspr;

 7 if (entry == 0) {

 8 break;

 9 }

 10 printf("0x%lx ", entry);

 11 }

 12 printf("\n");

 13

 14 exit(0);

 15 }

System register read:
mrs %0, s3_3_c2_c5_1

Increment 8 bytes each time

Eventually get to
the top of the GCS

Exit the program

32

Exploit backtrace
Hello David_S!

You have 99 coins

gcspr is 0xffffb03fffc8

0xaaaacd280bb4 0xffffb06627dc 0xffffb03ff000 0xaaaacd280b48
0xaaaacd280b68 0xaaaacd280cbc

What are all these addresses?

llvm-symbolizer to the rescue.

33

llvm-symbolizer
$ llvm-symbolizer \

--obj=./demo_gcs \

--adjust-vma=0xaaaaaaaa0000 \

0xaaaaaaaa0bb4 0xfffff7ffa7dc \

0xfffff7dff000 0xaaaaaaaa0b48 \

0xaaaaaaaa0b68 0xaaaaaaaa0cbc

Demo program binary
Virtual memory offset

Return addresses

https://llvm.org/docs/CommandGuide/llvm-symbolizer.html

https://llvm.org/docs/CommandGuide/llvm-symbolizer.html

34

Exploit backtrace

handler - main.c:96:17 (would have been used as exit’s return address)
__end__ - ??:0:0 (0xfffff7ffa7dc, __kernel_rt_sigreturn)
__end__ - ??:0:0 (0xfffff7dff000, signal handling cap token)
read_name2 - main.c:83:65 (where we were going to return to)
read_name - main.c:84:64

main - main.c:137:3

GCS shows the path we were supposed to take.

https://docs.kernel.org/arch/arm64/gcs.html#signal-handling

https://docs.kernel.org/arch/arm64/gcs.html#signal-handling

35

GCS Deployment

36

Linux Deployment
Covered in more detail by Steve Capper -
“Guarded Control Stack (FEAT_GCS) for Debian”, MiniDebConf Cambridge, October 2024

Highlights:
● Binaries are annotated to indicate compatibility with GCS.
● Custom assembler must be reviewed.
● GCS can be detected at runtime using the CHKFEAT instruction.

○ Which executes as a NOP on unsupported hardware.
● End user must opt in via. glibc tuneable.

Details may have changed, please review the presentation in full if you are interested.

https://www.youtube.com/watch?v=VSXljcPDMic
https://sourceware.org/glibc/manual/latest/html_node/Hardware-Capability-Tunables.html#index-glibc_002ecpu_002eaarch64_005fgcs

37

Conclusion

38

GCS in a Nutshell
● Prevent attacks that corrupt the return address.

● Lightweight backtracing for debug and profiling.

● Most code does not need to change.

39

How to Try GCS
For today’s demo:

● Source code
● Arm FVP 11.28.23 set to v9.5-a, run via shrinkwrap
● Linux Kernel 6.15-rc4 (6.13 minimum)
● LLDB 20 (>= 20 required)

Generally:
● Compilers:

○ Clang 19
○ GCC 15.1

● Glibc 2.41
● GDB is in progress
● QEMU is planned
● Hardware at some point in the future.

https://gitlab.com/Linaro/tcwg/guarded-control-stack-demo
https://developer.arm.com/Tools%20and%20Software/Fixed%20Virtual%20Platforms/Arm%20Architecture%20FVPs
https://shrinkwrap.docs.arm.com/en/latest/
https://kernelnewbies.org/Linux_6.13
https://community.arm.com/arm-community-blogs/b/tools-software-ides-blog/posts/what-is-new-in-llvm-19
https://gcc.gnu.org/gcc-15/changes.html
https://lists.gnu.org/archive/html/info-gnu/2025-01/msg00014.html
https://linaro.atlassian.net/browse/GNU-981
https://linaro.atlassian.net/browse/QEMU-517

40

Thank You!

