Supercharging
Generative Al:

.GO KleidiAl ™, PyTorch,
22\‘:; 3 and Arm® Neoverse

2025 Nikhil Gupta
Arm Ltd.

=
Arm Neoverse: Powering GenAl at Scale b

* Arm Neoverse and Armv9: Foundation for Cloud,

HPC and GenAl Clouds everywhere are
deploying Arm-based servers

* Scalable Vector Extension 2 (SVE2): Unlocking Data-
Level Parallelism

* Massive Compute and Hardware Acceleration for Al
i

Inl ByteDance e HETZNER
* Widespread Cloud Adoption: Neoverse in Major - @ T

Hyperscalers cLouohiant 10 Cloud

@) Kingsaft Cloud (%) Scaleway B8 B wevEase

=
linaro

Inferencing is Key to GenAl Adoption (1)

Training is the tip of iceberg
* Training = Only 15-20% of Al workloads

The Growth of Al is driven by inference
* Inference =~80-85% Al workloads*

* Real-world Al applications (GenAl, Recommender) are
inference heavy

Training ® Inference

Eoo =B @ 6y

Natural Language Automatic Speech Object Detection Recommender Image Generation
Processing Recognition System

3
*Source:_Schneider Electric — Al Disruption Report 2023

https://download.schneider-electric.com/files?p_Doc_Ref=SPD_WP110_EN&p_enDocType=White+Paper&p_File_Name=WP110_V2.1_EN.pdf

2D

Inferencing is Key to GenAl Adoption (2) finare

Efficient Inference needs high throughput, low latency and scalable performance

Challenges with Efficient Inferencing on - Solution Requirements
CPUs

* Memory bandwidth bottlenecks: Large * Fast and Memory-Efficient: Optimize
models require high memory access rates vectorization and bandwidth usage

* Limited parallelism: CPUs must maximize * CPU-optimized: Leverage Arm Neoverse
vectorization and threading efficiency features (low precision instructions)

* Handling large models: Scaling inference * Scalable across model types, sizes and
efficiently across CPU cores newer platforms

Supercharging GenAl at scale

=
Low-bit Quantization linaro

* Converts high-precision numbers (e.g., FP32) to lower-precision formats (e.g., INT4).

* Performs computation directly in the quantized form.

* 8x higher data density: INT4 model can fit eight times more parameters into the same cache space as FP32.
* Higher effective memory bandwidth: more data moved per cycle, less traffic to main memory.

* Enables Arm low-bit intrinsics (i8mm, dotprod) to achieve much higher compute throughput than FP32

matmuls.

* Possible to preserve near-original model accuracy with LLMs

’ S ...
| | L,
quant = TOURG\ T P X INT4

FP32 Scales
Tensor) Tensor
NxK NxK

AbsMax
Quantization

te

Scalability Through PyTorch Integration b

PyTorch-native integration ensures seamless adoption and ease of
use.
Leverages PyTorch’s massive ecosystem — tools, libraries, and

active community support.
Out-of-the-box compatibility for newly trained GenAl models — no
|

custom rework needed.
PyTorch is the Leading training framework for GenAl (e.g., Llama, ——
Gemma, Stable Diffusion).

|
Scalable across model sizes and deployment targets — from O PyTO rC h

raspberry-pies to arm neoverse.

Leveraging KleidiAl & PyTorch on Arm
Neoverse

Introduction to KleidiAl

S

<

arm
Kleidi

Optimized Al Micro Kernels:
Provide low-level, highly
optimized microkernels designed
for ARM CPUs

Quantized Matmul Kernels:
Designed for GenAl use-cases

Fast Packing Routines: Offers
fast weight & input packing
kernels for memory efficient
computations

Independent & Stateless: No
memory allocation &
dependencies

2

linaro
Connect

Target Users

* Al Framework Developers
e Al SDK Developers
e Al pipeline Developers

KleidiAl Domain

e (Classic ML
e GenAl
* Agentic Al

2

KleidiAl 4-bit Matmul linaro

/ INT4 '
Quantized
Weight
FP32
Weight
| Scales !

P “ l

INT8
Matmul Quantized Matmul +
[FMLA] Input Dequantize
= [I8MM,
FP32 Input DOTPROD]
Scales
FP32 Matmul INT4 KleidiAl Matmul

10

=

Input and Weight Packing o

/ INT4 :
Quantized
Weight

FP32
Weight
3 Scales ;

P “ l

INT8 k
Mt
L equantize
p -

[1I8MM,
FP32 Input DOTPROD]

Scales

1

Input and Weight Packing

LHS Quant &
Pack

RHS &
Scale Pack

—:

_

Quantized
Input

FP32 Input

Scales

/ INT4 '
Quantized
Weight
FP32
Weight
3 Scales !

-

2

linaro
Connect

Matmul +
Dequantize
[IBMM,
DOTPROD]
_

12

Input and Weight Packing

Static quantize and pack during prepare time

Pack

Dynamic quantize and pack during runtime

RHS & s—)
Scale Pack
Quantized
LHS Quant & — Input

FP32 Input

Scales

/ INT4 '
Quantized
Weight
FP32
Weight
3 Scales !

-

2

linaro
Connect

Matmul +
Dequantize
[IBMM,
DOTPROD] y

13

o)
linaro

KleidiAl Integration into PyTorch
EAES O EEE e

e Integrated directly into PyTorch S e e T oo oo
backend via custom ATen ops. [O PyTorch]

e Introduces two new 4-bit
quantized ops:

arm
COMPUTE LIBRARY

OpenBLAS [[;%r arm Kleidiﬁ.l]

IBMMUL BF16 NEON SVE/2 FP16 -]

Arm Neoverse Hardware ML Features

torch.ops.aten._dyn_quant_pack_4bit_weight

torch.ops.aten._dyn_quant_matmul_4bit [

14

2

TorchAO - Simplifying Quantization o

e One API call to quantize
any PyTorch model

e Seamless Integration with
PyTorch + KleidiAl

* Precise control over model
accuracy

e Layer-wise quantization
support

® @ torchao_quantize.py

quantize_(

my_model,

int8_dynamic_activation_intx_weight (
weight_dtype=torch.int4,
granularity=PexGroup(32),
has_weight_zeros=True,
weight_mapping_type=MappingType.SYMMETRIC_NO_CLIPPING_ERR
layout=PackedLinearInt8DynamicActivationIntxWeightLayout(target="aten"),

15

Text Generation Speedups

User: The lemon tree produces a pointed oval yellow fruit. Botanically
this is a hesperidium, a modified berry with a tough, leathery rind. Thqg
rind is divided into an outer colored layer or zest, which is aromatic
with essential oils, and an inner layer of white spongy pith.

Assistant: [thinking]

13 tok/s | Llama 3.1 8B FP32
PyTorch

2
linaro

Connect

User: The lemon tree produces a pointed oval yellow fruit. Botanically
this is a hesperidium, a modified berry with a tough, leathery rind.
The rind is divided into an outer colored layer or zest, which is
aromatic with essential oils, and an inner layer of white spongy pith.

Lemons need a minimum temperature of around 7 °C, so they are not hardy
year-round in temperate climates, but become hardier as they mature.
Citrus require minimal pruning by trimming overcrowded branches, with
the tallest branch cut back to encourage bushy growth. Throughout
summer, pinching back tips of the most vigorous growth assures more
abundant canopy development. As mature plants may produce unwanted,
fast-growing shoots called water shoots, these are removed from the
main branches at the bottom or middle of the plant. There is reputed
merit in the tradition of urinating near a lemon tree. Lemons need a
minimum temperature of around 7 °C, so they are not hardy year-round in
temperate climates, but become hardier as they mature. Citrus require
minimal pruning by trimming overcrowded branches, with the tallest
branch cut back to encourage bushy

68 tok/s | Llama 3.1 8B INT4
PyTorch + KleidiAl

Performance Impact with KleidiAl

Tokens/Second

1200

1000

800

600

400

200

TTFT / Prompt Phase

606
4.2x

142

Llama 3.1 8B
mFP32

1010
3.7x

270

Gemm 2 2B
KleidiAl INT4

360
4.6x

77

[|
Qwen 2.5 14B

120
100
80
60
40
20

Tokens/Second

Text Generation Phase

68
4.25x

13

Llama 3.1 8B
B FP32

110
3.92x

28

Gemma 2 2B
KleidiAl INT4

=

linaro
Connect

37
4.1x

9

[
Qwen 2.5 14B

17

2
Key Takeaways finare

Arm Neoverse: Designed for Al at Scale

Inferencing: The Driver of GenAl

Low-Bit Quantization: Core to Performance Gains for GenAl

PyTorch Integration: Mature Ecosystem with ease of Use at Scale

18

Resources & References

* Arm Neoverse 2 https://www.arm.com/products/silicon-ip-
cpu/neoverse/neoverse-v2

* KileidiAl https://qitlab.arm.com/kleidi/kleidiai
* PyTorch https://github.com/pytorch/pytorch

* TorchAO https://github.com/pytorch/ao

* Arm Learning Path https://learn.arm.com/learning-
paths/servers-and-cloud-computing/pytorch-llama/

Nikhil Gupta
Senior Software Engineer | Arm™

nikhil.gupta2@arm.com

2

linaro
Connect

{

<

arm
Kleidi

19

https://www.arm.com/products/silicon-ip-cpu/neoverse/neoverse-v2
https://gitlab.arm.com/kleidi/kleidiai
https://github.com/pytorch/pytorch
https://github.com/pytorch/ao
https://learn.arm.com/learning-paths/servers-and-cloud-computing/pytorch-llama/
https://learn.arm.com/learning-paths/servers-and-cloud-computing/pytorch-llama/

>

linaro
Connect Thank You!

2:0:72:5

	Slide 1: Supercharging Generative AI: KleidiAI ™, PyTorch, and Arm® Neoverse
	Slide 2: Arm Neoverse: Powering GenAI at Scale
	Slide 3: Inferencing is Key to GenAI Adoption (1)
	Slide 4: Inferencing is Key to GenAI Adoption (2)
	Slide 5: Supercharging GenAI at scale
	Slide 6: Low-bit Quantization
	Slide 7: Scalability Through PyTorch Integration
	Slide 8: Leveraging KleidiAI & PyTorch on Arm Neoverse
	Slide 9: Introduction to KleidiAI
	Slide 10: KleidiAI 4-bit Matmul
	Slide 11: Input and Weight Packing
	Slide 12: Input and Weight Packing
	Slide 13: Input and Weight Packing
	Slide 14: KleidiAI Integration into PyTorch
	Slide 15: TorchAO - Simplifying Quantization
	Slide 16: Text Generation Speedups
	Slide 17: Performance Impact with KleidiAI
	Slide 18: Key Takeaways
	Slide 19: Resources & References
	Slide 20: Thank You!

