
So, you want to
encrypt?
David Brown

Madrid 2024

Our Problem
● Data at rest.
● Recipient and Sender known, some communication before ok, beyond our scope

here.
○ Examples: IoT messages, firmware images.

● Sender sends messages, no response.
● Need to ensure authenticity, integrity, privacy.

Madrid 2024

Our Tools
● Symmetric Cipher
● Hash Function
● Key agreement
● Digital signature

Madrid 2024

Tools: Symmetric Cipher
Given a secret key, and a message M, encodes the message E(M) such
that D(E(M)) recovers the original message, but requires that the function
D also have the secret key.

Madrid 2024

Tools: Hash Function
Given a message M, H(M) returns a fixed sized “summary” of that
message. Properties include
● Having H(M) reveals no information about M
● Any change to M, results in a completely different H(M)

Madrid 2024

Tools: Key Agreement
For the two recipients: A, and B, each has a private key d and Q (dA, QA,
dB, and qB). Given knowledge of each other’s public key, and their own
private key, the two parties can agree on a secret between them x, that
cannot be determined by an entity that doesn’t know both public keys and
one private key.

Ephemeral key exchange. A random element is introduced that allows a
unique key xi to be generated for each session. Care must be taken as
these keys are not authenticated.

Madrid 2024

Tools: Digital Signatures
Given a private and public key d and Q, sig=Sign(d, M) will give a digital
signature, a fixed-sized message. A recipient can use Check(d, sig, M) to
validate that the message, M, is identical to the message used to sign.

Generally, the message is not signed but H(M), or similar.

Madrid 2024

Tools: Authenticated Encryption
A new addition to encryption is authenticated encryption. Given a private
key k, and a message M, We have (ciphertext, tag) = E(k, M), where the
ciphertext is the encrypted version of the message, and tag is a small
authentication tag that confirms that the message was not tampered
with. Decryption will check the tag.

Resolves complexity beyond “encrypt then mac” vs “mac then encrypt”, by
getting the benefits of both in a single operation. Also generally faster
than either encrypt then mac or mac then encrypt.

Madrid 2024

Choices
This gives us lots of choices. For each tool, there are multiple options
available, and within the options, often more choices to make.

It helps to choose standards for these, e.g., AES-GCM-128, SHA-256,
ECDHE and ECDSA with the p-256. But, it is also important to be able to
be flexible enough to use other options if vulnerabilities are found in any of
the components.

Implementation will result in even more choices.

Madrid 2024

Encoding: the hidden protocol
All of the tools are defined in a mathematical sense. Some result in raw
data, such as the symmetric cipher, but the rest generally result in a small
set of large numbers.

How this is encoded is also important. Lots of examples from interactive
protocols, e.g. TLS 1.0, 1.1, 1.2, and 1.3. 1.0 and 1.1 are deprecated, as
vulnerabilities are discovered.

Same issues apply to data at rest. Lesson: don’t invent this ourselves!

Madrid 2024

The Protocol: COSE
● COSE: CBOR Object Signing and Encryption, RFC 8949
● CBOR: Concise Binary Object Represenation, RFC 9052
● Public-defined formats, lots of scrutiny
● Still in infancy compared to TLS
● Most use of COSE has been about signing, encryption is young
● SUIT (software update for IoT) RFC 9019, and RFC 9124 built around

COSE and CBOR

Madrid 2024

Choices (again)
● COSE is useful, but again has numerous choices
● Pick algorithms and parameters we picked before
● Specify a “profile”
● Balance between generalized decoder, and one specific to a given set

of choices. For IoT firmware, may need to be specialized
● Some choices, e.g., Firmware encryption RFC draft specifics lots of

details about many of the choices, for the sake of security

Madrid 2024

It’s Still Hard
● These choices result in some confidence of security
● Given the track record of other protocols, vulnerabilities and

weaknesses will almost certainly be found

Thank you

