
Recent implementation/refactoring 
in TF-A

Manish Pandey, Arm



Madrid 2024

Content

● Context management

● Exception handling

● Undefined Injection support

● Firmware Handoff

● Vendor specific EL3 monitor SMC

● Feature Detection mechanism

● Enabling Architecture Features



Madrid 2024

Context Managment
● TF-A (BL31) provides CPU context initialization and world switching routines

○ Original design was based on 2 world system (EL3 being secure)

○ Arm CCA introduces 2 new worlds Realm and Root

○ Need refactoring to scale for 4 world system and decouple EL3 own context from secure

● Design principles [1] for 4 world system

○ Reduce EL3 FW complexity and footprint

○ EL3 should initialize immediate used lower EL

○ Decentralized model

■ The dispatchers (in EL3) should save/restore EL2 regs (SPMD/RMMD)

■ EL1 system registers should be saved/restored by EL2 managers (SPM/RMM)

○ Flexibility to pick and choose feature registers to be saved/restored

https://trustedfirmware-a.readthedocs.io/en/latest/design_documents/context_mgmt_rework.html


Madrid 2024

● Major changes

○ Migrate EL2/EL1 context from assembly 
to C

○ Allocate context memory based on 
feature enablement

○ Restrict few EL3 registers to have per-
world instead of per CPU copy

○ Introduce root context

○ Utility to report context memory usage



Madrid 2024

Exception Handling

● Error synchronization at EL3 vector entry paths

○ System error which happened in lower EL but not yet signalled to PE (rare)

○ Enter EL3 because of lower EL exception (e.g. SMC)

○ The error will be signalled as EL3 async EA when EA is unmasked during EL3 
execution

● On detecting pending async EA during EL3 entry, based on EA routing model

○ Firmware First handling (FFH)

■ Handle the pended EA first and then handle original exception

○ Kernel First handling (KFH)

■ Reflect error back to lower EL without handling original exception

● Behaviour with FEAT_RAS [2]

○ Avoid "esb" instruction as it might consume the error

○ TF-A relies on FEAT_IESB (assumed to be present if RAS is present)

https://trustedfirmware-a.readthedocs.io/en/latest/components/ras.html


Madrid 2024

Error Synchronization at EL3 entry



Madrid 2024

Undefined injection

● Lower ELs use ID registers to get PE 

capabilities while EL3 mostly enables them 

statically

● For a given arch feature, trap/enable typically 

combined in same control bit of EL3 register

○ Previously RES0 bits used for new feature 
control

○ Old EL3 FW unaware of this feature programs 
it to 0 (different semantics)

○ If accessing feature system register traps to 
EL3, it can end up in EL3 panic

○ The problem is, a VM can cause EL3 panic

○ Safety net : Inject this error back to lower EL, 
it may take some actions (e.g. avoid using the 
feature or update the FW)

EL3

SCR_EL3.FGTEn = 0

Lower ELs

id_aa64mmfr0_el1.fgt > 0

Access HFGITR_EL2

Sync Exception 

fromlow er EL

EL2 EL1

• Target EL?

• Recreate 

SPSR_EL3

• ESR_EL3

• ELR_EL3

Injected here if trap 

happens in EL0 or EL1

Injected here if trap 

happened in EL2 or 

EL2 in host mode



Madrid 2024

Firmware handoff

● Why?

○ Standardize the data structures and register convention between boot stages

○ Universal, Architecture agnostic and lightweight data structures

● What?

○ Transfer list (TL) comprised of various Transfer entries(TE) to propagate information during boot 
phases

○ Each TE represents the information produced by a boot stage and intended to be consumed by 
any later stage(s)

● Where?

○ Firmware handoff specification(0.9) is evolving and plans for 1.0 version soon [3]

○ Initial support in TF-A(BL1, BL2, BL31), OP-TEE and U-boot

■ U-boot's existing bloblist is identical in concept, update to make it fully compatible by adding TL attributes 
and extending the APIs

https://github.com/FirmwareHandoff/firmware_handoff/


Madrid 2024

Firmware Handoff
● Future

○ Currently each project has its own copy of library, what about hosting it as 
standalone library along with a tool (like libfdt and dtc)?

○ FVP support is experimental now, make it default choice

○ Wider adoption by other FW projects?

TE type Range Description Examples

Standardized TE 0 ~ 0xff Components that are very commonly used 

cross multiple projects

FDT, HOB, ACPI

0x100 ~ 0x1ff Trusted Firmw are related projects OPTEE pageable part,

SPMC manifest, 

TB_FW_CONFIG, EP_INFO

0x200 ~ 0x7f_ffff Other standardized components

Reserved 0x80_0000 ~ 0xff_efff Reserved for future extensions of Standardized 

TE

Non-standardized TE 0xff_f000 ~ 0xff_ffff Private area for single projects



Madrid 2024

Vendor specific EL3 monitor SMC

● Why?

○ Platform independent service from an EL3 implementation (e.g. TF-A)

○ Using existing SMC ranges (OEM, SiP, ToS) result in a lot of duplicity and 
fragmentation

● SMCCC 1.5 introduced EL3 vendor specific monitor range [4]

○ EL3 FW may standardize/document the services in the range

○ Better to be used by tightly integrated SW (e.g. projects at trustedfirmware.org )

● TF-A has created EL3 range for its usage

○ Initial migration of DebugFS and Performance Measurement Framework (PMF) 
from Arm SiP range

○ Other use cases

■ Secure OS to request memory map from BL31?

■ Intentional panic in TF-A for test automation

https://developer.arm.com/documentation/den0028


Madrid 2024

Feature detection

● Architecture feature states ENABLE_FEAT_XXX

○ DISABLED (0): Feature is disabled statically at compile time.

○ ALWAYS (1): Feature is enabled unconditionally at compile time.

○ CHECK (2): Feature is enabled, but checked at runtime

● Feature state DISABLE/ALWAYS ideal for fixed CPU platforms

○ Use FEATURE_DETECTION debug feature during development

▪ Panic if feature enabled in FW and not present in CPU

● Feature state CHECK is ideal for platforms which support multiple different 

CPUs in different configurations (e.g. FVP)

○ Higher memory footprint

○ ID register check at runtime



Madrid 2024

Enabling Architecture features

● Earlier ARM_ARCH_(MAJOR/MINOR) had dual purpose

○ Enable the architecture features

○ "march" option to be used by compiler

○ Because of this dependency Arch features can only be included up to which the 
compiler supports

● Fix this by decoupling ARM_ARCH_(MAJOR/MINOR) and 

use MARCH_DIRECTIVE

● All mandatory features will be enabled based on MAJOR/MINOR version

○ No need for platforms to enable mandatory features, Optional features still need 
to enabled.

○ Encourage platforms to set these values

○ Platform still can override mandatory features (discouraged)



Madrid 2024

References

● [1] : https://trustedfirmware-

a.readthedocs.io/en/latest/design_documents/context_mgmt_rework.html#i

ntroduction

● [2] : https://trustedfirmware-

a.readthedocs.io/en/latest/components/ras.html

● [3] : https://github.com/FirmwareHandoff/firmware_handoff/

● [4] : https://developer.arm.com/documentation/den0028

https://trustedfirmware-a.readthedocs.io/en/latest/design_documents/context_mgmt_rework.html
https://trustedfirmware-a.readthedocs.io/en/latest/design_documents/context_mgmt_rework.html
https://trustedfirmware-a.readthedocs.io/en/latest/design_documents/context_mgmt_rework.html
https://trustedfirmware-a.readthedocs.io/en/latest/components/ras.html
https://trustedfirmware-a.readthedocs.io/en/latest/components/ras.html
https://github.com/FirmwareHandoff/firmware_handoff/
https://developer.arm.com/documentation/den0028


Thank you


	Slide 1: Recent implementation/refactoring in TF-A
	Slide 2: Content
	Slide 3: Context Managment
	Slide 4
	Slide 5: Exception Handling
	Slide 6: Error Synchronization at EL3 entry 
	Slide 7: Undefined injection
	Slide 8: Firmware handoff
	Slide 9: Firmware Handoff
	Slide 10: Vendor specific EL3 monitor SMC
	Slide 11: Feature detection
	Slide 12: Enabling Architecture features
	Slide 13: References
	Slide 14

