
What does it take to ease SCMI
development and testing

Cristian Marussi - Kernel Developer @arm

Madrid 2024

Agenda

 Whoami
 What is this about
 SCMI Overview
 SCMI stack layout: i.e. what needs to be tested
 SCMI server testing (platform FW)
 SCMI clients testing (focus on Linux agent)
 SCMI Prototyping and Development Issues
 Client development issues and the proliferation of SCMI ‘Hack’ Servers
 The Mother of all issues...
 ...and a surely controversial proposal

Madrid 2024

What is this about

Evolution of the specification and improvements of the implementation led to
increased adoption of the SCMI stack by vendors under a number of new
deployment scenarios…

…this is good…but it means also that it is increasingly difficult to develop and
test all the bits and pieces of the SCMI “distributed” stack.

The aim of this talk is to present a walk-through of the current state of the SCMI
stack, looking at issues, shortcomings and pain-points around the SCMI
development and testing process.

(...so this is NOT about missing SCMI features, planned refactoring etc etc...)

Madrid 2024

SCMI – System Control and Management Interface – Overview
 protocol to abstract/unify control & power mgmt
 client/server model:

 a platform server (SCP/SCMI Arm reference)
 multiple agents, identified by their channel, as

clients issuing requests
 OS agnostic
 extensible by design
 delegation of mgmt control actions and policy

enforcement to an external entity, the SCMI
platform server, which lives in a distinct,
isolated, trusted code base: it acts as the final
arbiter on any request (deny/ignore)
 → good for security: implausible/malicious

 requests from agents can be ignored
 the SCMI server, being the centralized endpoint

of agents’ requests, can harmonize conflicting
requests from multiple clients around shared
resources
 → good for virtualization purposes

Madrid 2024

SCMI – Increasingly complex deployment scenarios
Thanks to the work carried out by Linaro, Arm and contributing vendors the SCMI stack has
evolved/matured to support an increasing number of deployment scenarios.

IOW, the SCMI server can live in a variety of different places:

 @dedicated MCU (SCP)
 @optee secure app
 @secure partition
 @VM

… using a number of different transports: mbox / smc / optee / ff-a / virtio

This by itself complicates validating the SCMI server compliance and, moreover, a number of
proprietary vendor SCMI servers has appeared, carrying potentially a variety of IMP_DEF
characteristics that we should be able to test against in the Linux SCMI agent.

Madrid 2024

SCMI stack - Linux Agent perspective Layered design:
 SCMI drivers: plugged into the related Linux

subsytems, use the available protocol
operations to issue SCMI requests.

 SCMI Protocols: implement the protocol
operations, knowing how to build and send
the appropriate SCMI messages using the
xfer operations.

 SCMI Core: implement xfer operations and
takes care of in-flight message tracking, reply
timeouts, polling mode, transmission errors
while using the configured transport
operations.

 SCMI Transports: implement transport
specific methods to send messages and fetch
responses.

Madrid 2024

SCMI – Testing what exactly ?
Looking at the ugly diagram, we have a hint at
what we want to test:
 Server (wherever it lives):

 SCMI Compliance to the specification
 ACS test-suite: scmi-tests

 Stress testing ?
 Fuzzing ?

 Client: cannot use regular SCMI drivers to
test SCMI interfaces:
 cannot exercise the API to its full extent
 limited means of interaction from drivers

 The aim is to test only:
 .scmi_protocol_ops
 SCMI Core functionalities

 message build/send/tracking
 errors, timeouts

Do NOT aim to test .scmi_transport_ops alone.

Madrid 2024

SCMI Raw – v6.3

tree /sys/kernel/debug/scmi/0/raw/
/sys/kernel/debug/scmi/0/raw/
├── channels
│ ├── 0x10
│ │ ├── message
│ │ └── message_async
│ └── 0x13
│ ├── message
│ └── message_async
├── errors
├── message
├── message_async
├── notification
└── reset

A debugfs interface to inject/snoop bare
LE binary SCMI messages.
Uses the standard core facilities and
transport to route the injected messages
to the SCMI server wherever it lives.
No need of custom transport test hooks.
Regular SCMI drivers are inhibited in
Raw mode to avoid false-positives.

Madrid 2024

SCMI Raw – Server testing

The principal use-case for SCMI Raw injection capabilities is, of course, Server-side testing:

 SCMI ACS compliance suite now supports also Raw mode [1]
 NOTE: using ACS in Raw mode limits compliance testing to the perspective of a Normal

world agent
 Easy to write a tool for stress-testing or fuzzing...or just go with a poor man solution:

 dd if=/dev/random of=/sys/kernel/debug/scmi/0/raw/message bs=128 count=1

 ISSUE: Running SCMI compliance on a real platform of some kind means risking unwanted
interactions with other SCMI agents acting in background.

[1]:https://gitlab.arm.com/tests/scmi-tests

Madrid 2024

SCMI Raw – Linux SCMI Agent core functionalities testing

SCMI Raw access can also be used for testing of client SCMI core functionalities to verify the
core (and transport) support for:
 Basic Sync & Async commands handling
 Notifications handling
 Timeouts and late replies
 Unexpected/malformed replies
 OoO replies
 Handling of multiple parallel request (depending on underlying transport)

This can be done really in a few ways: as an example an SCMI optional Test protocol could
provide some sort of “echo service” to exercise all of the above in a controlled manner.

 ISSUE: for all of the above to work we need an SCMI backend-server that can be made to
misbehave at will and can support effective multi-threading.
Real SCMI servers (proprietary or not) are hardly designed to misbehave on demand.

Madrid 2024

An SCMI driver that:

 Registers with each SCMI protocol found supported by the platform
 Exposes all the protocol_ops and resources descriptors, basically all the content of

include/linux/scmi_protocol.h, via debugfs to allow for extensive Kselftest scripting.
 Excludes regular SCMI drivers to avoid unwanted interactions while testing
 Only posted once as an RFC a few years ago...
 ...currently 90% complete in term of protocol coverage...
 ...but with all of the zillions Kselftest to be written
 Also generally useful for runtime ‘introspection’ and basic system interactions
 Is it worth ? (a lot to write and maintain…)
 Kunit maybe an alternative way to do this ? (not investigated)

SCMI Test Driver – Linux SCMI Agent protocol_ops testing - WIP

Madrid 2024

SCMI Test Driver – WIP – Is it worth ?
tree -L 1 /sys/kernel/debug/scmi/0/testing/
/sys/kernel/debug/scmi/0/testing/
|-- info
|-- protocol_0x11
|-- protocol_0x12
|-- protocol_0x13
|-- protocol_0x14
|-- protocol_0x15
|-- protocol_0x16
|-- protocol_0x17
|-- protocol_0x18
|-- protocol_0x19
`-- protocol_0xFF

sys/kernel/debug/scmi/0/testing/protocol_0x15/
|-- 000
| |-- enable
| |-- info
| | |-- async
| | |-- continuos_updates
| | |-- intervals
| | |-- name
| | |-- num_axis
| | |-- num_trip_points
| | |-- scale
| | |-- sensor_config
| | |-- timestamped
| | |-- tstamp_scale
| | `-- type
| |-- reading_get
| |-- reading_get_timestamped
| |-- sensor_config
| |-- sensor_trip_notifs
| `-- trips
| |-- 000
| `-- 001
|-- 001
| |-- enable

Madrid 2024

 ISSUE: what to use as a backend SCMI server ?
 Needs something that implements all possible SCMI protocols (hardly implemented in full

on any real platform due, trivially, to space concerns)
 Notifications ? Not all notifications can be easily triggered on demand
 Difficult to configure tests expectations for the general case on a real platform
 Is it safe to exercise freely all the possible protocol_ops invocations ?

 Will it kill/freeze the DUT during the run by mistake ?
 Will it fry the DUT all-together due to some misconfiguration/bug ?

SCMI Test Driver - WIP

Madrid 2024

 IDEA for a new SCMI protocol results in ATG working on its specification for SCMI-next:
 ATG prototypes new protocol: FVP or real platform + mocking
 OR
 Vendor prototypes the new protocol in its own proprietary server and platform

 ATG TestTeam starts adding new test-cases to the ACS compliance suite
 KernelTeam starts planning/working on upstream Linux Agent support
 SCP FW team starts planning/working on upstream SCP/SCMI support

All of these steps happen on heavily different/disjoint timelines/deadlines….as is normal,
given different teams and companies are involved, each one with its own priorities…

… most probably, before any complete SCMI client/server upstream support is ready
 ATG releases the new Beta-public spec and, ideally, the updated ACS test-suite

 ISSUE: ATG TestTeam had nothing reasonably stable and complete on the server side to
validate their new ACS test-cases.

SCMI New Protocols: Prototyping & Development Lifecycle

Madrid 2024

 Server side development for SCMI-next just needs:
 A published SCMI-next specification
 SCMI Raw access from a Linux Agent userspace
 (possibly an updated ACS to produce SCMI requests through Raw)
 no need to have any kind of Linux SCMI-next driver support to start server development

Instead, SCMI Agent development process is more tricky: it needs some sort of SCMI
speaking entity somewhere to play the server-role.

For this reason and the out-of-sync development timelines:
 A number of simplified ‘hack’ SCMI server were borne, scattered around various codebase:

 U-boot mock-server
 TF-A mock-server
 ACS mock-server (!)
 scmi_emu: userspace emulated mock-server (that’s me!): kvmtool + guest + scmi_emu

...beside the more usual setup:
 SCP + mocking + QEMU/FVP

SCMI Agent development process is the most problematic

Madrid 2024

All of these hacks share the common aim to provide a simplified SCMI server entity which:

 Does NOT have to cope with real HW support (all mocked)
 Does NOT need proper extensive abstractions in its design (it is not a product)
 Does NOT need to support multiple platforms/architectures
 Does NOT need extensive, flexible, well abstracted configurability
 Does NOT have to follow any specific IMP_DEF choice that limits its test-ability (mono-

thread)
 Code base is small enough to be understandable: easy and quick to prototype new additions
 Can cope with any kind of out-of-spec requests without risks...all is mocked, nothing can fry
 Can be easily reconfigured at build/run time to address specific testing needs

SCMI ‘Hack’ Servers

Madrid 2024

scmi_emu: Userspace Emulation

● SCMI Agent - a standard Linux Guest
using SCMI/VirtIO

● SCMI Server - a Linux userspace multi-
threaded application running on the host
receiving and sending SCMI messages
through Unix datagram sockets

● kvmtool exposes a VirtIO SCMI device to
the guest:

● intercepts the SCMI traffic from/to the
guest

● re-routes the SCMI messages back and
forth between the virtqueues and the
SCMI emulation Unix datagram sockets

Madrid 2024

1) Tiny build-system: few-lines makefile just supports arm64 and x86 cross-compilation
2) Heavily multi-threaded by design
3) Thin abstractions just to provide an aid in message build and transmission
4) All is mocked and easily re-configurable: nothing to fry (look mama no HW !)
5) Small enough code-base that a new protocol support can be drafted in one afternoon
6) Full control of packet scheduling logic

can be made to misbehave at will, event by re-configuring it at runtime (echo service)
7) Server behavior can be reconfigured at runtime potentially using ad-hoc debug protocol:

trigger notification generation (e.g. SytemPower Graceful shutdown)
configure values to be read-back at runtime out-of-band (no fixed expectation in CI)

8) Easy to setup and run...a Linux userspace app running in the host + a kvmtool guest
9) Can be used to host any SCMI guest for development purposes:

freeBSD SCMI support is growing….starting with VirtIO transport
10)Throw-away test-code is welcome ! e.g. powercap recursion (...with the option to refine/merge later)
11)Can be tested for compliance with ACS like any other SCMI server (not saying that it passes now)
12)Can be used to test VirtIO Transport misbehavior
13)No other interacting agent on the system: only Linux OSPM agent requests are seen

scmi_emu: Userspace Emulation – Pros

Madrid 2024

1) Massive duplication of work (the elephant in the room)
2) Limited to VirtIO Transport based setups: agents in guests
3) Only testing from Normal world view
4) Not performant as the QEMU-based virtualized SCMI which uses vhost-users
5) Only support for “Unices” guest SCMI agents (:P)
6) Developing/testing both side of the world together by the same team/person is bad process
7) Cannot snoop messages from other agents, so it can support only Linux Agent (at of now…)

At the end, scmi_emu is really just a different (worst) way to achieve the same virtualized SCMI
scenario as realized by Linaro with QEMU and the SCP/SCMI reference platform firmware: the
virtual setup is more limited in scope, tailored for debug/test, and worst in performance for
sure….but...

… beside the different virtualization architecture, the main difference that makes it more
desirable to ease Client development, is in fact the usage of a fake, simplified, stripped-down
SCMI server.

SCMI Userspace Emulation – Cons

Madrid 2024

IMHO, using a real (even virtual) platform embedding a real fully fledged SCMI server of any
kind (proprietary or open) for prototyping and development is the origin of all client side
development issues.
Since, in this way, we are in fact using a full-fledged “product” which, by its nature:
 has to support a number of real platforms and its HW which brings complexity/abstractions
 adopts a number of IMP_DEF implementation choices that can limit testability on client side
 was not designed to misbehave easily/safely at will
 cannot (or want not) support a complete SCMI stack (all protocols / all optional features)

...while, at the end, we just needed a minimal subset of its functionalities, i.e.
 a compliant SCMI-speaking entity supporting all of the protocols and features

Now, I am not saying that we must necessarily find and use one single virtual SCMI platform to
rule them all ... neither I am trying to sell my solution...

… since each “hack” SCMI server has probably its own merits...but there is something could be
done to reduce the massive amount of work duplication...

Mother of all Issues (related to SCMI Agents development / testing)

Madrid 2024

In an ideal (SCMI) world, we would have a pure SCMI library which:

 can be plugged on any backend to use it as data source
 can be connected to any frontend for the effective SCMI tx/rx message processing
 has no included and pre-baked message scheduling logic

...with that available we could:

 write unit tests upfront and run it in CI
 use it as a base to build your preferred simplified-server to fit your needs, without

duplication of work, and knowing that is reasonably SCMI compliant
 prototype/draft new features on it early on and then, maybe, refine that same code base for

final library support (instead of throwing all away)
 have a reasonably compliant SCMI server against which validate the ACS test-suite

And you could end up releasing a bundle of:
 SCMI Specification + validated ACS test suite + SCMI reference library

A pure SCMI library (a long shot :P)

Thank you

	What does it take to ease SCMI development and testing
	Agenda
	What is this about
	SCMI – System Control and Management Interface – Overview
	SCMI – Increasingly complex deployment scenarios
	SCMI stack - Linux Agent perspective
	SCMI – Testing what exactly ?
	SCMI Raw – v6.3
	SCMI Raw – Server testing
	SCMI Raw – Linux SCMI Agent core functionalities testing
	Slide 11
	SCMI Test Driver – WIP – Is it worth ?
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

